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algorithms produced such disappointing results? Numerous studies and experiments have been 
conducted to show that pictures and animations can improve learning of challenging, abstract 
concepts like mathematical proofs and the algorithms used in computer science. While the 
pictures and animations seem to be enthusiastically received by the students, none of the studies 
have produced results that show consistently and conclusively that these visual tools actually 
improve learning. In fact, the accumulated empirical evidence is mixed at best, and could easily 
lead one to abandon the premise that animations are powerful vehicles for effectively conveying 
the dynamic behaviors of algorithms. However, this dissertation reports on research based on the 
premise that a rethinking of algorithm animation design is required in order to harness its power 
to enhance learning. Research reported here explores the integration of previous work in 
algorithm animation systems with recent developments in the cognitive and educational domains 
to produce a new model for using software visualizations to improve student comprehension. The 
model is based on focused learning objectives that drive a top-down design that carefully divides 
abstract concepts into discrete chunks for learning. The model takes a user-centered ("what do 
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hypermedia and multimodal presentation techniques to improve learning effectiveness. The key 
insights are that for algorithm animations to be effective, (1) they should be introduced using 
interactive analogies and real-world examples that serve a priming role for subsequent learning, 
(2) the animations should be presented within a framework that includes explanatory information 
in other appropriate media, and (3) the animations should be presented in varying levels of detail 
depending on the learner's capability. In this dissertation, we first summarize prior research on 
algorithm animation. Second, we discuss the theoretical foundations of our approach, 
architecture of the resulting hypermedia algorithm visualization system, and empirical studies that 
show a significant advantage for the system. We then present ablation studies that explore the 
features that made our framework effective, and conclude with a discussion of ways this 
framework can be implemented for presentation over the Internet. 
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the dynamic behaviors of algorithms. However, this dissertation reports on research based on the 
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subsequent learning, (2) the animations should be presented within a framework that includes 

explanatory information in other appropriate media, and (3) the animations should be presented 

in varying levels of detail depending on the learner's capability. In this dissertation, we first 

summarize prior research on algorithm animation. Second, we discuss the theoretical 

foundations of our approach, architecture of the resulting hypermedia algorithm visualization 

system, and empirical studies that show a significant advantage for the system. We then present 
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1.        INTRODUCTION 

"A picture is worth a thousand words," so goes the old Chinese proverb. There is 

certainly a wealth of evidence that supports this notion of the educational richness and power of 

visual over textual media. Psychological studies of learning, memory, motivation, and problem 

solving show that coupling pictures with text forms a very effective combination to help students 

learn new concepts. One study, considering the tremendous advances in computer technology to 

produce and deliver graphical software, suggested that if a picture was worth a thousand words, 

then a dynamic simulation may be worth a thousand pictures (Whitney & Urquhart, 1990). 

Many computer science instructors and researchers have embraced this idea, and have 

endeavored over the past 15 years to exploit the dynamic power of animations to help students 

learn algorithms.   Dozens of systems have been developed, enthusiastically praised by both 

students and instructors. However, before any new instructional technique is advocated, it 

should be empirically tested to show it provides an educational advantage over existing methods. 

Intuition and opinion alone are not sufficient. 

Herein lies the perplexing paradox. Contrary to widespread intuition, despite the 

enthusiasm, despite the tremendous advances in multimedia technology, and despite over a 

decade of extensive research, attempts to use animations to facilitate learning algorithms have 

failed to produce compelling evidence of their instructional effectiveness and have not led to 

their widespread use in computer science curricula. Is it because animation is not an effective 

teaching medium? Should educators use these results to forgo the use of algorithm animation? 

1 



Current empirical results seem to defy our intuition, and may lead to prematurely abandoning a 

promising instructional approach. Therefore, we believe that further investigation is required to 

identify factors that lead to success, and this forms the primary goal of this research. 

The purpose of this research is to study and build on previous efforts, based on the 

premise that previous attempts at using animation to teach algorithm behavior were 

unsatisfactory not because of a flaw with animation as a technique, but because of the approach 

used to convey the animations. Our working hypothesis is that a rethinking of algorithm 

animation design is required in order to harness its power to enhance learning.   The goals of the 

research are to develop a theoretical framework of visualization design that leads to effective 

instruction, to conduct a series of formal empirical studies using computer science students to 

validate the framework, and produce a system that allows widespread use of the framework over 

the Internet. 

This document is structured as follows. Chapter 2 contains a discussion of previous 

research in cognitive science, hypermedia, and algorithm animation, including a brief survey of 

existing algorithm animation systems and empirical studies involving those systems. Chapter 3 

presents the unique combination of features that we believe are needed to provide a framework 

for effective learning using animation and hypermedia, and describes how those features were 

incorporated in the design of a system developed to test our ideas and hypotheses. Chapter 4 

describes the experiments that we conducted to validate the effectiveness of our framework 

against popular teaching methods such as textbooks, lectures, and other animation systems. 

Chapter 5 dissects and analyzes the framework in a series of experiments that removed selected 

features and views in order to identify those components that led to the significant results 

reported in Chapter 4. Chapter 6 describes the efforts to make the experimental framework 



available to the general public as well as work performed to port the capabilities to Internet- 

based platforms. Chapter 7 summarizes this research and presents ideas for future research. 

Finally, there are several appendices that provide the materials used during the various 

experiments, screen captures of each of the visualizations that have been created to date, and 

interaction data captured during the experiments that may be of value to other research efforts. 



2.        PRIOR RESEARCH 

The foundations of current algorithm animation research are rooted in developments and 

breakthroughs in other areas. This chapter highlights relevant findings in diverse topics such as 

graphics, multimedia, human-computer interaction design, computer-based instructional systems, 

and animation. A survey of algorithm animation systems follows, along with a discussion of 

empirical research that has been conducted to evaluate the educational effectiveness of these 

systems. This will set the stage for Chapter 3, which examines possible reasons for the mixed 

and disappointing results of current systems and ways to address the shortcomings. 

2.1. RELATED WORK: 'PAVING THE WAY' 

2.1.1. THE POWER OF MULTIMEDIA 

The past decade has witnessed dramatic improvements in the power of computer 

hardware and the ease of use of graphical software programs. Coupled with extremely attractive 

prices and easy-to-use graphical software, superb multimedia presentations have become a 

widespread reality.   Exploiting these features to improve the process of training and education is 

understandably increasing. It can be argued that the visual sense is the strongest source of human 

information acquisition, constantly receiving and processing millions of bits of information. 

Blackwell (1996) states that pictures are good at showing abstraction, that pictures are a 

universal form of communication, and that images can supplement other forms of 

communications even to the illiterate. Studies show that humans can grasp the content of a 



picture much faster than they can scan and understand text because of our ability to recognize 

spatial configurations and relationships (Kamada & Kawai, 1991), and that visual images 

increase learner attention (Daily, 1994). Matlin (1989) cited several studies on retention and 

recognition, where people had a remarkable 99.7% retention rate of images seen within 2 hours, 

and 63% recollection of 2560 images shown a year before. Duchastel (1978) states that pictures 

serve three key roles: (1) they attract the learner's attention; (2) they can help the reader 

understand information that is hard to describe in words; and (3) they can reduce the likelihood 

that information is forgotten. 

Putting motion to pictures, thereby creating an animation, presents an extra dimension 

beyond static diagrams. A study by Hegarty (1992) showed that individuals, when presented with 

static diagrams of mechanical devices, generally perform mental animations by inferring the 

motion/kinematics of the objects in the diagram along the causal chains of events they perceive. 

Explicit, computer-presented animation, in addition to depicting aspects such as trajectory, 

synchronization and motion, can be used to call attention to aspects of a problem that might 

otherwise go unnoticed (Brown, 1988a). Animation has been shown to improve understanding of 

dynamic processes and machines (Reiber, 1990). Reiber, Boyce and Assad conducted a study 

(1990) using a computer based science lesson to teach introductory Newtonian mechanics to 

adults. Their results showed that students who viewed the animations were able to complete the 

post-tests in significantly less time. 

Multimedia systems tap the synergy of combining visual images with other forms of 

media, as shown by several studies by Mayer (Mayer & Sims, 1994; Mayer, 1989). They 

observed that students were better able to recall and transfer what they had learned from a 

science textbook when text and illustrations were presented next to each other rather than 

separately. Mayer claimed that the labeled illustrations played two roles: guiding student 



attention and helping them build internal connections between ideas in the text. Subsequent 

experiments by Mayer and Anderson (1991,1992) considered the use of animation and narration 

to help students understand scientific explanations. In two experiments, college students viewed 

animations and/or listened to narrations explaining the operation of a bicycle pump. Students 

who saw the animation and listened to the narration simultaneously outperformed all other 

groups on a creative problem solving test. Their work is an extension of the 'Dual-Coding' 

theory described by Paivio (1986) which suggests that humans possess two information 

processing systems, one that stores and represents information verbally and another that is visual. 

Learning is enhanced when material is presented to the student in these modes in ways that 

encourages the building of referential connections between the visual and verbal modes.   Mayer 

and Moreno (1998) summarized these results as a set of principles that designers should follow 

to tap the potential of multimedia learning environments: designers should (1) present 

explanations in multiple media, (2) present the multiple media contiguously, (3) use audio to 

avoid splitting the student's visual attention and (4) keep media brief and focused, thereby 

enhancing coherence. 

A study by Palmiter and Elkerton (1993) compared the use of animated demonstrations, 

written text and narrated animation for teaching users how to operate a particular graphical 

interface. They expected that the narrated animation group would perform the best with 

animation aiding the initial learning and narration aiding retention and transfer. Their results 

showed that the performances of the animation-only and narrated animation groups were very 

similar and better than the text group. The animation group was faster and enjoyed the lesson 

more, according to user surveys. 



2.1.2. HYPERMEDIA IN COMPUTER-BASED EDUCATION 

Hypermedia and multimedia are being used increasingly as teaching and tutoring tools. 

Daily (1994) cites several studies of multimedia instruction that report dramatic improvements in 

retention and learner attention while at the same time reducing cost and overall training time. 

She presents the results of several experiments comparing the effectiveness of multimedia 

learning to traditional classroom techniques for certain engineering applications. She concludes 

that multimedia greatly increased student participation and was at least as effective as traditional 

teaching methods. Bagui (1998) cites another eight studies that show computer-based 

multimedia helped people learn more quickly than classroom lecture. Crosby and Stelovsky 

(1995) reported similar findings, stating that the dynamic, interactive and visual capabilities of 

multimedia courseware led to better student performance and higher class attendance for the 

multimedia instruction sessions. 

Narayanan and Hegarty (1998) describe research involving the efficacy of diagrams, text, 

and animation as teaching and training tools. They build a model of comprehension and provide 

guidelines for the development of interactive hypermedia manuals, particularly of machines 

where motion is involved. The central tenet of their model is that users follow certain steps 

when given a multimodal presentation: (1) they decompose the material, (2) they construct a 

mental model based on both referential and representational connections, (3) they determine the 

causal chains of events, and (4) they mentally animate the model to infer results. Properly 

designed hypermedia systems facilitate all these steps in ways that conventional texts cannot. 

In addition to providing information in multiple modes, hypermedia technology allows 

multiple ways of organizing it and presenting it to the student. Most studies favor a guided but 

flexible navigational approach, where novice students are guided by a natural navigational path 

through the screens of an educational sequence, but provides knowledgeable users with the 



ability to bypass sections and directly navigate to desired topics. A more critical issue is how to 

organize educational content. Information processing theory (Miller, 1956) refers to a 

meaningful unit of information as a 'chunk,' and suggests that the average person can hold up to 

seven chunks in short term memory at a time. Blackwell (1996) suggests that the reason people 

learn more quickly through pictures than text is because a picture is stored in the brain as an 

information-rich chunk, in contrast to words that are stored and processed one at a time. Other 

authors suggest that chunk sizes are related to expertise (Vessey, 1985) and that chunking may 

help in the retention process (Wang and Arbib, 1993). Bagui (1998) claims that hypermedia 

systems are inherently chunked because the viewer sees information presented in a prepared 

series of pictures, text and sound clips connected together in a prepared sequence. Another study 

(Recker, Ram, Shikano, Li & Stasko, 1996) suggest that information is processed more easily 

and faster if it is appropriately chunked into 'cognitively relevant' pieces based on learning 

goals. 

Simply using multimedia in computer-based education is not a guarantee for educational 

success, however. One criticism of multimedia training has been labeled the 'TV syndrome' or 

the 'hands-on, mind-off problem, where the media is entertaining and colorful but educationally 

useless because it fails to engage the reasoning and inference processes that must be used to 

understand complex material. Addressing this concern is research in the areas of interactivity, 

self-diagnosis and systems based on learning objectives, discussed below. 

Hypermedia is not inherently interactive simply because the reader controls navigation 

and pacing of the courseware. Merely watching a simulation is not sufficient to trigger learning 

(Reed, 1985; Pane, Corbett & John, 1996; Rappin, Guzdial, Realff & Ludovice, 1997). 

Yaverbaum, Kulkarni and Wood (1997) summarize several studies about the advantage of active 

over passive learner paradigms in hypermedia systems, stating that when students are doing and 



not just watching, multimedia offers serious improvements, and that the active paradigm engages 

the student better in the process of discovery, reflection and explanation. Theories in 

constructivism suggest that the learner needs to be actively involved rather than passively 

accepting information, and views the teaching process as a form of apprenticeship, where the 

expert (the teacher or carefully designed computer-based instruction) collaborates with the 

student using scaffolded lessons that nurture, coach, engage problem solving skills and 

encourage reflection (Narayanan Hmelo, Petrushin, Newstetter, Guzdial & Kolodner, 1995). 

One such system, called STABLE, (SmallTalk Apprentice-Based Learning Environment), 

showed that a principled approach to hypermedia design led to success even with less-than- 

perfect scaffolding (Guzdial & Kehoe, 1998). 

In developing a multimedia learning environment to study and analyze animal behavior, 

researchers stated that "to expect a learner to discover [complex skills and knowledge] through 

free exploration in a rich multimedia environment is not enough. A pure hypermedia approach is 

not sufficient" (Boyle, Stevens-Wood, Feng and Tikka. 1996). To combat learner complacency, 

they developed learning objectives and used tests at the end of learning blocks to ensure target 

competencies were mastered before letting students move on to new material. They reported that 

over 80% of the students indicated a preference for this feature. Shikano, Recker and Ram 

(1996) examined how students interacted with multiple media employed by their hypermedia 

system called AlgoNet. They noted that hypermedia systems can falsely lead some students to 

the illusion that they know all the materials covered, and suggested the use of a self-diagnosis 

node for students to use to reflect on their understanding, and help determine which nodes to 

visit. Thus, scaffolding, navigational aids, and self-reflective prompts are needed to avoid the 

behavior noted by Pane et al. (1996), who observed that "even motivated students cannot be 
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relied on to take full advantage of exploratory opportunities" in hypermedia systems that lack 

these capabilities. 

Pane also observed the importance of authors using well-defined educational goals to 

help guide and enhance hypermedia learning.   The importance of well-thought out learning 

objectives cannot be underestimated. Bloom (1956) showed how learning objectives are critical 

to success in each of the six levels in his taxonomy of learning. In the cognitive domain, which 

deals with the acquisition and use of information, these levels are: 

• Knowledge: activities such as remembering, memorizing, recognizing, and recalling 

facts. 

• Comprehension: activities such as interpreting, rewording, explaining, organizing, 

and translating information and ideas. 

• Application: activities such as constructing, demonstrating, problem solving, and 

applying facts/rules/principles to produce a desired result. 

• Analysis: activities such as decomposition, classification, identifying components, 

and contrasting. 

• Sythesis: activities such as organizing, designing, creating/combining ideas to form 

a new one, and inferences about unstated behaviors. 

• Evaluation: activities such as value judgements, defending, arguing, resolving 

controversies, and assessing correctness. 

Bloom showed how instructors could find greater success in teaching when lessons were 

developed to meet one of these learning levels, especially when the objectives were written and 

stated beforehand. Reed (1985) referred to it another way, as an 'external lesson strategy,' 

noting its importance in order to focus student attention on pertinent features of the animated 

display. Yaverbaum et al. (1997) concluded that multimedia offers a good solution to certain 
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educational ills when delivered within a framework based upon appropriate learning objectives 

and good design principles. These are essential for understanding. 

2.2. ALGORITHM ANIMATION RESEARCH 

2.2.1. OVERVIEW 

Over ten years ago, with the unveiling of the movie Sorting out Sorting at SIGGRAPH- 

81, the idea of using graphics and animation to illustrate the dynamic behavior and functionality 

of computer algorithms was born. It appeared to hold great promise as an instructional aid, and 

since then over a hundred software visualization systems have been built (Price, Baecker & 

Small, 1993). Some of the best known algorithm animation systems are Balsa (Brown, 1988a, 

1988c) and Tango (Stasko, 1990), which, with a host of variants and successors, seem to have 

been developed in the belief that algorithm animations would serve as effective supplements to 

help students learn about algorithms. This was a compelling goal, since computer science 

students generally find the subject of algorithm design particularly challenging, and any 

techniques that could help the learning process would save time and reduce frustration. 

2.2.2. WHAT IS ALGORITHM ANIMATION? 

An algorithm is a clearly specified set of instructions to be followed to efficiently and 

effectively solve a problem. Governed by mathematical constraints, they define a series of 

operations that manipulate abstract data structures over time until a terminating condition is 

reached. Algorithms are used extensively in computer science, and are one of the building 

blocks of computer software. However, unlike the tangible objects studied in other sciences, 

algorithms are inherently abstract entities. Not only do they lack any concrete representation in 

the natural world, they define dynamic processes that change over time, making them difficult to 



12 

teach and to learn. Most authors and instructors make use of graphical notations and diagrams as 

visual aids in an effort to provide a concrete representation of the abstract components of an 

algorithm. Many use sequences of diagrams to help depict algorithmic behavior and changes 

over time. Recent breakthroughs in computer graphics technology provide new opportunities to 

illustrate algorithmic behavior. One such technique is animation. 

Algorithm animation has been defined as the process of abstracting the data, operations 

and semantics of computer algorithms, and then creating moving graphical views of those 

abstractions (Stasko, Domingue, Brown & Price, 1998). The animation becomes a time-evolving 

graphical depiction of how the algorithm's operations affect the data structures associated with 

the algorithm. By mapping the abstract entities of the computation to the visual entities on a 

computer screen, algorithm animation provides the viewer with a concrete depiction of how the 

algorithm manipulates data items and achieves its goals over time through a series of operations. 

Hence, well-designed algorithm animations enable students to see the inner workings that are 

otherwise hidden. The typical approach employed by most animation systems is to use simple 

geometric shapes (bars, circles, and dots) to represent individual data elements, and to move 

these shapes to depict the manipulation and transformation of data by the algorithm. 

Many believed that creating an animation of an algorithm is simply a process of 

assigning a graphical shape to display each access or update to the variables associated with an 

algorithm's execution. However, algorithm animation turned out to be much more difficult. In 

his seminal work on algorithm animation, Brown (1988a) summarizes several problems that 

algorithm animation designers must face, including the difficulty of capturing operations, real- 

time performance and limitations of information displays.   Of these, deciding on what to depict 

and how to represent it are generally recognized as the most challenging task and the one for 

which the least guidance is available (Brown, 1988a; Brown & Hershberger, 1991; Stasko, Badre 
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& Lewis, 1993; Naps & Bressler, 1998). This is because an algorithm is more than a collection 

of variables. An algorithm represents a series of operations that affect the data stored in data 

structures. The meaning and semantics of the operations can be quite subtle, yet understanding 

those semantics is the crux of learning an algorithm. For example, consider the difference 

between an initialization operation on a variable and a swap operation. Both involve placing a 

value into a variable, but the swap operation involves a careful handling of the contents by using 

a temporary variable or key information will be lost. Because the semantics of the operations 

like these are not always readily apparent, deciding how best to depict and highlight those 

operations using graphics is the challenge the animation designer must face. 

2.2.3. WHY STUDY ALGORITHM ANIMATION? 

Computer science students generally find algorithm analysis and design a most 

challenging subject. It is easy to understand the difficulty. Algorithms manipulate abstract data 

structures (a tough subject in and of itself) whose contents change over time. The algorithm's 

behavior changes depending on the input values. Hence, algorithms are both abstract and 

dynamic entities, but the methods used to teach them (textual descriptions and diagrams) are 

concrete and static, not always well suited to describing dynamic processes. A survey of 

teaching methods (Badre, Beranek, Morris & Stasko, 1991) shows that over 80% of instructors 

used textbooks, diagrams and lectures to teach about algorithms. This means that teaching 

students how to comprehend and analyze the behavior of fundamental computer science 

algorithms depends mainly on an instructor's ability to impart an understanding of the dynamics 

involved using lectures and static media. For this reason, other methods have been sought to 

help students learn, beginning with the unveiling of the movie "Sorting out Sorting" at the 1981 

ACM SIGGRAPH conference which demonstrated the use of graphics and animation to illustrate 
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algorithm behavior. This 30-minute film took 3 years to create and used a series of color- 

enhanced screen captures and explanatory narrative to 'teach' nine sorting methods. The film 

culminated in a 'grand race,' where 2500 data items were depicted simultaneously in a separate 

window running each algorithm to show the performance difference in real time (see Figure 2.1). 
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This movie marked the beginning of research on algorithm animation and in the years since, 

numerous systems have been developed to facilitate learning in a wide variety of settings, such 

as: 

• to supplement lectures on algorithms in electronic classrooms (Brown, 1988a; Stasko, 

1997; Gurka & Citrin, 1996; Bazik, Tamassia, Reiss & Van Dam, 1997); 

• to illustrate the basic operations of abstract data types in a computer science laboratory 

(Naps, 1990; Pierson & Rodger, 1998); 

• to facilitate debugging logic problems (Baecker, DiGiano & Marcus, 1997); 

• to help programmers understand and find performance bottlenecks in parallel programs 

(Heath & Etheridge, 1991; Kraemer & Stasko, 1993); 

• to depict operating system functions (Hartley, 1994); and 

• to trace the parsing of natural language processing routines (Rogers, Gaizauskas, 

Humphreys & Cunningham, 1997). 

The general expectation with algorithm animation as an instructional aid is that providing 

concrete depictions should improve comprehension and facilitate learning. However, relatively 

little empirical evaluation of algorithm animation systems has been conducted to substantiate this 

belief. 

2.2.4. AN OVERVIEW OF EXISTING ALGORITHM ANIMATION SYSTEMS 

One of the first algorithm animation systems was Balsa (Figure 2.2) which was widely 

used in Computer Science classrooms at Brown University (Brown & Sedgewick, 1985). With 

the benefit of hindsight, a significant shortcoming with Balsa was that the animations were not 

informative enough—they merely illustrated 'interesting events' identified by the 

animator/instructor in the execution of the algorithm. The animations typically showed large 
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numbers of data elements represented as simple geometric elements being rearranged spatially on 

a display. For instance, the input to a sorting algorithm was shown as a large number of dots, 

representing the input values to be sorted, strewn randomly on the screen. As the algorithm 

executed, these dots slowly rearranged themselves into a diagonal line. Such displays, without 

additional pictorial and verbal explanations, impede comprehension by making it hard for the 

learner to construct referential and representational connections in their mental models 

(Narayanan & Hegarty, 1998). Balsa was used in classrooms where, presumably, the instructor 

provided the needed explanations. We are not aware of any literature that presents evaluation of 

the system or assessment of its effect on student learning. Nevertheless, Balsa marked the 

beginning of the first significant research program on algorithm animation, and a variety of 

successor systems have followed (Price et al., 1993; Stasko et al., 1998). A selection of such 

systems are described briefly in the pages that follow. 

Figure 2.2. Balsa-ll Screens Views of the Quicksort and SelectionSort Algorithms (Brown, 1988a) 
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Zeus (Brown, 1991): Written in Modula-3, Zeus was the first animation system that supported 

use of color, sound, synchronized views, and introduced 3D graphics. It was designed for multi- 

threaded, multi-processor environments which allowed depiction of parallel programs. While it 

was compiled for several computing platforms, Zeus did not see widespread use outside of the 

laboratory. However, several weeklong programming events were conducted at the DEC 

Systems Research Center to demonstrate the flexibility and variety of Zeus animations. The 

screen capture in Figure 2.3 is copied from Brown (1994). 
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GAIGS (Naps, 1990): Developed with a focus on data structures rather than algorithm 

animation, GAIGS was one of the first systems to support multiple snapshot views of algorithms. 

In effect, this system used 'before' and 'after' pictures of algorithms in progress and relied on 

the user's ability to mentally animate the changes between each frame. Some research suggests 

this is a powerful approach because it forces mental animation (Hegarty, 1992) by not providing 

explicit animation for every step. WebGaigs (Naps & Bressler, 1998) extended this approach to 

allow delivery of snapshot animations over the Internet. A screen capture of the WebGaigs 

system is shown in Figure 2.4 and was adopted from Naps & Bressler (1998). 
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Tango (Stasko, 1990): Tango enhanced Balsa's 'interesting event' approach, adding several 

refinements and porting the capabilities to the Unix platform. XTango (Stasko, 1992) extended 

those capabilities to X-Windows, and Samba and Polka (Stasko, 1997) were written to facilitate 

animation playback. There is currently a version for Microsoft Windows also. Tango provided a 

set of commands that let the author specify and manipulate the shape, size, location, and color of 

various graphical objects according to how the animation author wanted the operations of the 

algorithm to appear. The collection of Tango commands formed an 'animation script' that could 

be played over and over to illustrate the operation of the algorithm on a specific set of data. The 

script could be generated by a word processor or by carefully inserting print statements into 

working code representing the 'interesting events' that were selected for highlighting and 

illustration. Tango employed a path-transition paradigm to yield smooth movement of the 

graphical objects rather than the strobe-like transitions of earlier systems. The smooth 

movement provided a pleasing and easy to follow animation for the student. Most current 

experimental studies of algorithm animations have been conducted using Tango and its 

successors.   The screen capture of XTango shown in Figure 2.5 was copied from Lawrence et 

al, 1994). 
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Lambada (Astrachan et al., 1996) and JAWÄA (Pierson & Rodger, 1998): Both of these systems 

were built to enhance and extend the Tango framework. Like Tango, both systems make use of a 

graphics engine that uses a separate script file which contains commands that create and 

manipulate visual objects to produce the desired animation. This 'interesting event' approach 

allows scripts to be created from either a word processor or by inserting print statements into a 

working program. Unlike Tango, both Lambada and JAWAA were written in Java to allow 

delivery over the Internet. JAWAA provided a number of additional commands that facilitate 

creation and manipulation of complex data structures. Where Tango authors had to build complex 

data structures element by element, JAWAA authors could employ high-level commands to 

construct arrays, trees, graphs, stacks and other complex data structures with a single command. 

Figure 2.6 was taken from http://www.cs.duke.edu/~wcp/JAWAA.html. 
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SWAN (Shaffer et al., 1996): Developed to facilitate automatic depiction of the data structures 

and basic execution processes of C/C++ programs and written for the MS-DOS environment. 

Swan views a data structure as a graph or collection of graphs including directed and undirected 

graphs, trees, lists and even arrays. Swan animators annotate C/C++ source code which is then 

compiled and produces a visual depiction of the underlying data structures of the program. The 

layout of the graphical components is handled automatically. The Swan interface allows the 

annotator to place terse explanations in a small window at the bottom of the screen to help explain 

the status of the execution. A sample screen view of the Swan system in action is shown in Figure 

2.7 and was captured from a running version of the software that was downloaded from 

http ://geosim. es .vt.edu/Swan/Swan .html. 

Figure 2.7. Swan Screen View Showing a Network Flow Problem 
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C Animator (Sangwan & Korsh, 1998): Developed as a tool to allow visualization without 

annotating source code, this system provides an interesting bridge between visual program 

development systems and algorithm animation systems. The authors also describe their system 

as an excellent debugging tool. The system uses a set of specialized header files that recognize 

selected C/C++ variable declarations, and invokes special compiler-level calls to create 

visualizations of those objects automatically. Students or instructors simply make syntactic 

changes to data type declarations to a form that their compiler recognizes and the resulting 

animations are generated automatically. When executed, the program creates a set of tiled panes, 

containing the source code, global and local variables, function parameters, a call stack, current 

operations, and a visual representation of the data structure being manipulated. Figure 2.8 shows 

a screen view of these panes during the execution of an insert operation on an AVL tree. 
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Jeliot (Lahtinen et al., 1998): Jeliot was developed as a system to facilitate visualization of Java- 

based source code over the Internet. Animating a program with Jeliot involves a series of steps. 

First, the code panel is loaded with the program to be visualized. The program is a subset of the 

Java language, in that only a certain set of variable types are recognized by their preprocessor for 

animation. Once the source code is loaded, three panes appear: a controller, a stage manager, and 

the animation stage. The controller provides the user with an interface to characterize and 

manipulate the animation. The stage manager provides controls for the student to assign shapes, 

colors, layouts and locations to as many variables as desired. The stage is where the animated 

objects appear as the program executes. Figure 2.9 shows each of these panes in a screen capture 

of the system during execution of the selection sort algorithm, taken from 

http://verosaari.cs.helsinki.fi:8807/Jeliot/. 
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JCAT (Brown & Najork, 1996): JCAT (Java-based Collaborative Active Textbooks) is an 

environment that supports Web-based animations that can be jointly viewed by multiple users. 

JCAT employs a form of interesting event scripting. Figure 2.10 shows a screen capture of the 

JCAT implementation of the quicksort algorithm, taken from 

http://www.research.digital.com/SRC/JCAT. 
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AACE (Gloor, 1992): Developed in HyperCard and currently distributed as a CDROM 

supplement to a textbook (from MIT Press), AACE (Animated Algorithms for Computer Science 

Education) was the first commercially marketed algorithm animation system. It was also one of 

the first systems that used real world analogies to help describe the algorithm. AACE supported 

interactive animations and employed multimedia presentation techniques that included multiple 

windows to describe the animation, such as a code window, and a window with explanatory text. 

Animations could not be user-developed however. Figure 2.11 shows a screen capture of the 

AACE system showing the bucket sort algorithm during execution, from Gloor (1992). 
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Figure 2.11. The AACE Framework Showing the Bucket Sort Algorithm 
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AlgoNet (Recker et al., 1995): Written in Visual Basic to explore how students interact with 

cognitive media types, this system never saw widespread classroom use, though some empirical 

usability studies with students have been conducted. AlgoNet contained lessons dealing with 

shortest path algorithms and included both real world case studies and examples to help introduce 

and reinforce subject matter. AlgoNet did not emphasize nor make heavy use of animations. The 

AlgoNet framework was not intended to be a general purpose algorithm animation system but 

rather a research framework to study use of a variety of media in cognitively relevant forms to help 

meet user needs and learning objectives. Figure 2.12 shows a screen capture of the AlgoNet 

system, taken from http://c2000.gatech.edu^rothert/research/projects/AlgoNet/start.html. 
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Figure 2.12. AlgoNet Screen View 
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There are several other user-developed algorithm animation systems. For example, the 

Sun Web site includes a entertaining page showing various animated sorting algorithms 

(http://www.sun.com).   Ecks has developed an excellent Java-based instructional tool called 

XSortLab that animates a variety of sorting algorithms, shown in Figure 2.13 and available at 

http://math.hws.edu/eck/csl24/labs98/lab9/xSortLab.html. This system includes two levels of 

explanatory statements that accompany a very intuitive graphical depiction of the algorithms. 

Another author, Peter Brummund, created a similar tool called the SortAnimator, shown in Figure 

2.14 and available at http://www.cs.hope.edu/~alganim/animator/SortWindow.html. This tool 

forgoes textual explanations but includes a variety of controls for the student to tailor the 

presentation and playback of a number of sort algorithms. The animation is also accompanied by 

the algorithm code, highlighting the line being executed. 

Apply "QuickSortStep" to items 1 through 8 

The range of possible final positions for item 1 is boxed 

Figure 2.13. The XSortLab Application Showing the Quicksort Algorithm 
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There are a number of other algorithm animation systems that are discussed in the 

literature but are not discussed above, such as the Algorithm Explorer (McWhirter 1996), 

DRUIDS (Whale 1996), DynaLab (Birch et al., 1995) and others. There are several Web sites 

devoted to serving as clearing houses to other algorithm animation implementations. Peter 

Brummund maintains a Internet site with links to 43 sites that employ some form of algorithm 

animation (at http://www.cs.hope.edu/~alganim/ccaa/ccaa.html). Another list maintained by 

Hausner is at http://www.cs.princeton.edu/~ah/alganim, and yet another is at 

http://www.cs.duke.edu/~jeffe/compgeom/demos.html. 

When chronologically viewed, successor systems made enhancements and improvements to 

earlier systems in several noteworthy areas: 

• Code independence - Creating a set of language-independent commands to control the 

animation, permitting instructors to create animations from a wider variety of source 

programs. 

• Internet delivery - Allowing wider dissemination and platform independence. 
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• Presentation techniques (such as use of color, sound, and smooth animation) - Improving 

the aesthetics of the animations. 

• Integration of textual explanations - Providing terse but useful descriptions of the events 

being depicted. 

• Multiple windows - Allowing multiple views of one algorithm, or comparative views of 

similar algorithms. 

Generally, the systems reported in the literature can be categorized into three types, listed 

below. 

• Language Supersets (Those that provide code libraries that enhance current languages). 

For example, Algorithm Explorer uses specific data structure declarations to drive 

compiler-recognized animation sequences. These libraries modify language compilers 

and extend their capabilities to support animation. They generally recognize particular 

data structures and invoke procedures to graphically illustrate them as the program 

executes. These are the easiest for students to work with, in theory, because the student 

does not need to worry about the mechanics of illustrating the animation—the compiler 

automatically generates the visual components. The disadvantages are that the systems 

can only recognize and illustrate a fairly restrictive set of data structures, provide fairly 

little supporting media, are limited in the manner in which the animations can be 

presented, and are available for specific platforms and languages. The systems reported 

above that fall into this general categorization include Jeliot, Algorithm Explorer, C 

Code Animator, Druids, and DynaLab. 

• Interesting Event Systems (Those that work with event scripts). Tango, for example, 

works with graphic commands generated as output from existing programs or authored 
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from a word processor to create and manipulate animation objects. These systems provide 

greater control over the design and presentation of the animation and do not restrict the 

animator to any specific language. The biggest disadvantage is the learning curve imposed 

on the animation designer to leam the manipulation commands and ensure the 'playback' 

environment is present for the student to view the resulting animations. The systems 

reported in the previous section that make use of the interesting event/scripting paradigm 

are JCAT, XTango, JAWAA, and Lambada. For example, the diagram in Figure 2.15 is 

created from the script depicted next to it: 

circle cl 30 20 60 blue red 
textt2 42 55 "JAWAA" black 
moveRelative cl 60 0 true 
moveRelative cl 0 50 true 
moveRelative t2 100 100 true 
moveRelative cl -60 0 true 
moveRelative cl 0 -50 true 
moveRelative t2 -100 -100 true 

array A 100 40 3 "hello" "your" "world" horz black red 
changeParam A[2] bkgrd white 
changeParam A[2] bkgrd red 
changeParam A[l] bkgrd white 
changeParam A[l] text "my" 
changeParam A[l] bkgrd red 
changeParam A[0] bkgrd white 

moveRelative A[2] 60 0 true 
moveRelative A[l] 30 0 true 

rectangle rl 100 100 20 20 black blue 
rectangle r2 50 100 20 20 black green 
rectangle r3 100 150 20 20 black red 

groupObject group 1 5 cl t2 rl r2 r3 
moveRelative group 1 200 200 true 

groupObject group2 3 rl r2 r3 
moveRelative group2 -200 -200 true 

[gigtj] 'Stop] i'-P«utt" j 

JLE 

Figure 2.15. An Example of an Interesting Event Script and the Animation it Creates 

Dedicated Systems (Those animations created without provisions for instructors to 

author new sequences). For example, AlgoNet, AACE, and XSortLab are packaged 

learning environments/applications that cannot be extended by end-users. They 
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require extensive coding to implement animation sequences, but allow much richer 

and interactive tutorials. Other systems include SWAN, DRUIDS, and GAIGS. 

These provide the greatest control of media presentation to the learner and are 

relatively easy for the student to use, but these also require a tremendous investment 

by the author/animator in time and effort. 

The animation systems that have enjoyed the widest use and longest 'shelf life' have 

been the ones that are most flexible and accommodate the widest variety of animations. Tango 

and its clones and successors seem to be the most popular animation environments currently 

available. Built on the 'interesting event' paradigm, the Tango graphic command set allows a 

wide variety of animation styles. Scripts can be generated by inserting output statements into a 

fully functioning program, or can be produced from a word processor. This powerful 

arrangement facilitates a number of possible animation styles, and has even been used by 

students where they assume the role of the instructor and create an animation of their own to 

depict their visualization of various algorithms (Stasko, 1997). 

Most of the empirical research so far has been conducted using the interesting event 

systems, which seem to provide greater user control over creation and modification of animation 

scripts, as will be seen in the following section. 

2.2.5. EMPIRICAL STUDIES OF ALGORITHM ANIMATION EFFECTIVENESS 

Guided mainly by intuition, most of the systems discussed in the previous section were 

developed in the belief that algorithm animations would serve as successful tools for students to 

learn about algorithms (Pierson & Roger, 1998; Sangwan & Korsh, 1998; Shaffer et al., 1996; 

Whale, 1996; Stasko & Patterson, 1992; Stasko, 1997). This belief has a strong intuitive basis. 

Students have always had a relatively difficult time understanding abstract mathematical notions, 
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especially when these included dynamics of how algorithms manipulate data, so concretizing 

these notions graphically and animating these to illustrate the dynamic behavior ought to improve 

learning. So while it is certainly possible to learn about an algorithm without using animation, it 

seems almost obvious that a student could learn faster and more thoroughly with one. 

Subjective studies are almost unanimous in their praise for animated algorithms. 

Students, exposed to animations, have reported that they felt the animations assisted them in 

understanding the algorithm (Stasko et al., 1993; Naps, 1990; Naps & Bressler, 1998; Gloor, 

1992; Stasko, 1997; Gurka & Citrin, 1996).  Instructors echo similar positive comments and 

many embrace their use as an integral part of their teaching method (Naps & Bressler, 1998; 

Gurka & Citrin, 1996; Stasko, 1997; Brown, 1988c; Eck, 1998).   Unfortunately, the elation has 

been dampened for students and instructors when formal empirical research about the benefits of 

animation in computer science and elsewhere began to show disappointing results (Reiber et al., 

1990; Badre et al., 1991; Palmiter & Elkerton, 1991; Stasko et al., 1993; Byrne et al., 1996). 

Badre et al. (1991) conducted a faculty survey to identify algorithm teaching practices 

and conducted an observational study of two groups of students working with a shell sort 

algorithm. One group saw the animation while the other did not. They found that student 

performance in the animation condition varied with individual background and that good 

students did well regardless of whether they used the animation or not. 

Lawrence (1993) conducted a series of experiments to evaluate student preferences and 

performance using various animation presentation techniques. Groups viewed animations with 

slightly varied components, and both subjective and empirical results were gathered.   Some of 

the subjective statements indicated, for example, user preferences for vertical over horizontal 

bars, for bars over dots, for solid images rather than hollow ones, and so on. She conducted 

several experiments comparing specific animation conditions, finding that groups viewing 
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animations with color cues performed worse than groups viewing monochrome animations, and 

that groups viewing animations that included 'conceptual labels' (a terse one line explanation of 

what the animation was doing) performed significantly better than groups viewing animations 

without such explanatory statements. Finally, she reported a statistically significant benefit to 

students who were allowed to interact with the animation system by entering their own data sets 

as input to algorithms over the group that passively watched already prepared animations. The 

results supported her hypotheses for the positive effects of conceptual labeling and for student 

interaction, but found the negative effects of using color in animation somewhat surprising, 

leading her to recommend sparse and judicious use of color to highlight well-labeled events and 

to avoid arbitrary coloring schemes. Her results are insightful and provide guidelines for 

algorithm designers to consider, but do not compare the effectiveness of learning algorithms by 

animation compared to other traditional teaching methods. 

Another study was conducted by Stasko, Badre and Lewis (1993) which used an 

interactive animation to teach a priority queue algorithm to computer science graduate students 

under text-only and text-and-animation conditions. The study hypothesized that animation would 

aid procedural understanding but found that the animation group did not perform any better than 

the control group on questions testing procedural knowledge. They found the effects of the 

animation was not as strong as expected ("non-significant trend favoring the animation group"). 

They attribute the lack of performance of the animation group to a property of most 

visualizations, which is that an animation typically represents an expert's understanding of the 

algorithm, not a novice's. They state, 

"For a student to benefit from the animation, the student must understand both the 

mapping [from the algorithm to the graphics] and the underlying algorithm on which it is 
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based.. .Students just learning about an algorithm do not have a foundation of 

understanding upon which to construct the visualization mapping." (Stasko et al., 1993, p65) 

Lawrence, Badre & Stasko (1994) conducted a detailed 2X2 study of students learning 

about an algorithm under lecture-only, lecture-and-laboratory, lecture-and-animation, and 

lecture-animation-laboratory conditions. In the laboratory condition, students either participated 

passively by watching, or actively by specifying different inputs to the algorithm. They found no 

significant difference between lecture-only and lecture-and-animation conditions, but they did 

find a significant (p<.05) effect in the active lab conditions on tests measuring conceptual 

knowledge. 

Byrne, Catrambone & Stasko (1996) also found limited learning effects in 

undergraduates using interactive animation. Their study examined the effects of animation and 

making predictions. In learning new algorithms, some students viewed animations and some 

were prompted to make predictions about an algorithm's operation on novel data sets. One 

experiment used novice students studying the relatively simple depth-first search algorithm, and 

the other used expert students with a more challenging binomial heap algorithm. In both cases 

they used a 2 X 2 design with animation/no-animation and prediction/no-prediction conditions. 

They found that the ability to make, test and receive feedback on predictions contributed to 

learning. But animations did not seem to confer any significant advantage over paper-and-pencil 

predictions. Thus, their conclusion is that animations, as traditionally conceived, may have less 

effect on learning than generally assumed. They conjecture that benefits from animations may 

accrue only if the learner has the right amount of prior knowledge, not so much that the 

information provided by the animation is redundant, but not so little that the information is 

difficult to understand and integrate. 
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Hundhausen (1996) provides an excellent summary of the results of 29 empirical studies 

pertaining to the comprehension efficacy of algorithm animations and more generally, software 

visualization. Of the 29 experiments, only the three reported by Lawrence (1993) generated 

statistically significant results, and these dealt with design issues rather than learning 

effectiveness over traditional teaching methods. He observes, succinctly summarizing the 

paradox that our research will address: 

"The results have been mixed, with a majority of the studies failing to obtain the 

statistically significant result for which their authors had hoped. In stark contrast, 

questionnaire and survey data have painted an overwhelmingly positive picture of 

software visualization effectiveness; most people who use software visualizations seem to 

think that it helps them." (Hundhausen, 1996, p22) 

This intuitive belief in the benefit(s) of visualization is not borne out by empirical 

studies. Therefore, our research has two thrusts: (1) to design better algorithm visualizations and 

(2) to empirically and statistically demonstrate their effectiveness. 

2.3. THE PROBLEM: MOVING FROM ANIMATION TO VISUALIZATION 

Though research on designing and deploying algorithm animation spans over 15 years, 

including dozens of experiments conducted to test whether animations lead to improved 

understanding, all one can say about this accumulated evidence is that the results, at best, are 

mixed. On one hand, subjective comments by students and instructors applaud the use of 

animation as a teaching tool, citing it as enjoyable, entertaining, interesting, and even revealing. 

On the other hand, the empirical evidence has been terribly disappointing in confirming the 

effectiveness of algorithm animation as a teaching tool. The general conclusion that emerges is 

that algorithm animation, as traditionally constructed and used, may not be as effective for 

learning as had been expected. The mixed, disappointing results can lead one to abandon the 
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premise that animations are powerful vehicles for effectively conveying the dynamic operations 

of algorithms on data structures.  The following quote succinctly expresses the frustration felt by 

researchers working in this area: 

"Unfortunately, the viability of algorithm animations as instructional aids remains rooted 

in intuition. No substantive empirical evidence has ever been presented to support these 

claims."   (Stasko, Badre & Lewis, 1993, p61). 

Furthermore, the vast majority of current algorithm animation systems, with a few 

exceptions, remain on the shelves as dust-gathering research prototypes, or made available over 

the web for the curious to experiment with. Even in those few cases where algorithm animations 

and animation building systems have been deployed in undergraduate classrooms, systematic 

studies of their effectiveness to test whether these do indeed lead to improved understanding of 

algorithms are yet to be conducted. There is also little research that can shed light on issues such 

as whether combining animations with other kinds of explanations can improve learning, and if 

so, what might the principles be for designing such explanations. 

In the studies that failed to find significant benefits to using animations, the following 

explanations seem plausible: 

•    There are no, or only limited, benefits using algorithm animation. 

This is contrary to intuition and other positive results in non-algorithmic areas. Hence, if 

we accept the premise that animations are indeed useful, then we must rethink the 

process of algorithm animation design in order to harness its power to enhance learning. 

Perhaps the results of earlier work were unsatisfactory not because of a flaw with 

animation as a technique, but because of the approach used to convey the animations. As 

stated earlier, perhaps the flaw in previous algorithm animation systems was not in the 
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use of animation, but in the design of the system employed to deliver the algorithm 

animation to the student. 

There are benefits to using algorithm animation but the measurements used in the studies are 

not sensitive to them. 

Many of the studies focused exclusively on student performance, but did not measure 

other factors that animations might affect, such as speed of learning, student motivation, 

student satisfaction, and long-term retention. Evidence of effectiveness in any of these 

measures could present a valid argument for acceptance of algorithm animation systems. 

However, our chief focus will be to measure student performance, and we will leave the 

other metrics for future research. The experiments in Chapter 4 concentrate on 

measuring student performance by comparing groups that interact with animated 

algorithms and groups that learn algorithms using traditional teaching methods. 

Something in the design of the experiment or animation prevented participants from 

receiving the benefits. 

It is quite possible that the experiments encountered factors, such as buggy software, 

awkward user interface, inadequate or faulty hardware, and insufficiently developed 

animations that led to less than satisfactory results and skewed the findings. For 

example, some experimenters mentioned not properly isolating the independent variables 

between the groups (Hundhausen, 1996), improper phrasing of questions (Byrne, 

Catrambone & Stasko, 1996; Crosby & Stelovsky, 1995), and having questions that did 

not match the learning material (Reed, 1985). One author stated his system was simply 

too unstable to contemplate formal testing (Whale, 1996). These problems shaped our 

efforts. However, one study mentioned a reason that falls within the scope of our 

research: Byrne et al., (1996) suggested the animations used might not have been 'the 
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right ones,' that they may not have been properly designed. Since a 'bad' animation 

could negatively affect results, we dedicated a portion our research on studying factors 

and features that make a good animation. The experiments in Chapter 5 explore the 

effectiveness of a variety of features and design approaches that give insight to future 

researchers and developers concerning the design of better algorithm animations. 

Before presenting the experiments, in the next chapter we will present and describe the 

framework we developed to address these issues and concerns. 



3.        TOWARDS A FRAMEWORK FOR EFFECTIVE VISUALIZATION (OR 

'WHAT WAS MISSING BEFORE') 

This research is based on the hypothesis that animations are indeed powerful vehicles for 

effectively conveying the dynamic behavior of algorithms, but that a rethinking of algorithm 

animation design is required in order to harness its power to enhance learning. Research has 

shown clearly that animation, by itself, is not enough. What is needed is a new framework that 

leads to effective visualization. The Oxford English Dictonary (Simpson & Weiner, 1989) 

defines visualization as "the power or process of forming a mental picture or vision of something 

not actually present to the sight." Where animation is concerned with moving graphic objects to 

create the illusion of motion, visualization involves use of animation and a host of other 

techniques to create a clear mental image in the mind of the observer. Visualization then, is a 

much richer and more involved process than merely watching an animation. 

3.1. COMPONENTS OF THE FRAMEWORK 

Our research explores the integration of previous work in algorithm animation systems 

(e.g., Kehoe & Stasko, 1996; Recker, et al., 1995) with recent developments in the cognitive and 

educational aspects of multimedia (e.g., Crosby & Stelovsky, 1995; Narayanan & Hegarty, 1998) 

to produce a novel approach to designing algorithm visualizations to improve student knowledge 

and comprehension. This approach is based on explicating learning objectives that drive a top- 

down design process which carefully divides abstract concepts into discrete chunks for learning. 

40 
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Unlike previous work, our model takes a user-centered ("what do we need to show") view rather 

than a technology-centered ("what can we show") view, and employs hypermedia and 

multimodal presentation techniques to improve learning effectiveness.   We call the resulting 

framework, containing text, diagrams, audio as well as animations, a hypermedia visualization. 

Under this new framework, an algorithm visualization is more than a mere animation. It 

describes a scaffolded, apprenticeship-oriented environment (Soloway et al, 1996; Guzdial & 

Kehoe, 1998) that elicits active student participation using a carefully orchestrated presentation 

of information in various media (such as animations, text, static diagrams, aural narratives, etc.) 

with appropriate temporal, spatial and hyperlink connections to semantically related components. 

The foundation of this new framework integrates ideas encountered in related work with original 

concepts developed in our research. 

3.1.1. OBJECTIVE-BASED DESIGN 

Our framework employs top down design techniques that are based on learning 

objectives. As noted by Stasko, Badre and Lewis (1993) and Reed (1985), learning objectives 

are critical to educational success. The objectives determine what the student needs to know and 

to what depth (Bloom, 1956), and ultimately drive the content of the views, the animations, the 

interactions, and the questions to ask to measure understanding. Hundhausen (1996) stated: 

"the lack of a well-defined task objective places learners in an unrealistic (and potentially 

disconcerting) situation in which they are to explore an animation without a clear idea of 

what they are supposed to get out of it. As learners engage in an aimless process of 

discovery learning, there is no guarantee that they will stumble upon the insights into 

algorithmic behavior that could help them on the upcoming test. Thus the lack of a 

concrete objective may serve to rob an animation learning session of its putative 

benefits." (Hundhausen, 1996, pl8) 
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Using Bloom's taxonomy of learning (see Chapter 2.1.2), an example of application-level 

learning objectives for the insertion sort algorithm might include: 

• Main Learning Objective 

• Demonstrate understanding of the insertion sort algorithm to include its purpose, key 

steps, data structure manipulations and terminating condition(s) as applied to various 

sorting problems 

• Sub-objectives 

• Express the insertion sort algorithm in high level terms, such as pseudocode or 

english 

• Describe the overall strategy insertion sort uses to sort data 

• Explain the purpose of the outer loop of the insertion sort algorithm 

• Identify the variables that control the outer and inner loops of the insertion sort 

algorithm 

• Explain the purpose of the inner loop of the insertion sort algorithm 

• Describe how a single element is placed into proper sequence 

• Explain the conditions that result in insertion sort terminating successfully 

• Given any set of input, trace the execution of the steps the insertion sort algorithm 

would follow 

Objectives stated in this way give direction to the learner and the designer. For the designer, they 

are the foundation of the various visualization development tasks or steps (Hundhausen, 1996), 

including identifying the interesting events that the animation should illustrate (Brown, 1988a; 

Stasko, 1990) and providing an outline of the supporting materials and techniques (Lawrence, 

1993; Pane, et al., 1996) that should be used. For the student, clearly stated objectives provide 

focus, purpose and direction to learning. 
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3.1.2. MULTIMODAL PRESENTATIONS 

A unique aspect of our framework is that the focus is shifted—it is not on the animation 

itself, but on providing relevant and sufficient information in appropriate media (Rappin et al, 

1997) to support achieving the learning objectives. Other research discussed the importance of 

collocating graphics with textual descriptions (Stasko, Badre & Lewis, 1993; Mayer, 1989; 

Lawrence, 1993), and of appropriate use of audio cues and narratives (Brown & Hershberger, 

1991; Mayer & Anderson, 1991; Bagui, 1998; Hundhausen 1996; Mayer & Moreno, 1998). Our 

framework involves embedding animations within a hypermedia visualization, along with textual 

descriptions, audio and diagrams. 

An original feature is the introduction of different forms of text, such as: 

• static descriptions- passages that are presented in panels that remain visible to the user 

and do not change, such as introductions, definitions and pseudocode; 

• animated text- passages in which lines are highlighted in synchronization with other 

screen objects; 

• contextual explanations- text that is provided in response to specific conditions 

determined by the state of the system. 

Another capability that is not unique to our framework but bears brief explanation is the use 

of multiple forms of audio to enhance the hypermedia experience, including: 

• sound cues- audio 'bells' or 'buzzers' that signal selected conditions, such as the 

completion of a loop or invoking a swap operation; 

• redundant narrative- an audio segment that mirrors text already visible to the user. 

Audio used in this way employs the dual-coding theory (Paivio, 1986) and is thought by 

some to help reduce cognitive load. It also allows the user to visually roam to view other 

parts of the screen since the ears are receiving the words in place of the eyes; 
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•    contextual cues- audio segments that direct user attention to specific features or 

interactions that should be explored further. This provides a form of scaffolding by 

providing the user with prompts and hints that are not directly related to the content of 

the animation, but can significantly deepen the learning experience by highlighting 

features that could be very useful and educational to the student. 

3.1.3. BRIDGING ANALOGIES 

Another unique approach embraced by our framework is the use of real world analogies, 

cases and examples to introduce and illustrate key concepts. An analogy is a learning device in 

which knowledge about entities in a well-known domain (the source) is mapped into another 

lesser-known domain (the target). At the highest level, students are introduced to the algorithm's 

basic operations using animated real world analogies, and are provided with a bridge between the 

analogy and the abstract components of the algorithm as well as the concrete graphical 

representations used to depict the algorithm in later animations. This approach draws from the 

observations that students tend to employ analogies in describing how algorithms operate 

(Douglas, Hundhausen & McKeown, 1995; Stasko, 1997), and that analogies can serve to 

provide a form of scaffolding (Hmelo & Guzdial, 1996) for subsequent learning. Related 

research (Kolodner, 1993) suggests that using analogies, cases and examples to introduce and 

teach complex physical systems is crucial to building mental models because learners can draw 

from similar principles extracted from overlapping experiences. Analogy allows the application 

of preexisting conceptual structure to new problems and domains, and hence supports the rapid 

learning of new systems. Of all the learning processes, analogy is the only one that offers a 

mechanism for the acquisition of substantial knowledge structures in a brief span of learning 

(Gentner, 1989; Brophy & Schwartz, 1998). In our framework, the conceptual gaps between the 
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analogy, the abstract components of the algorithm and the concrete graphical representations 

used in the animation are bridged using explanatory text to help build the necessary referential 

connections (Mayer & Sims, 1994; Narayanan & Hegarty, 1998) for better comprehension. 

These analogies set the stage for subsequent detailed learning, and may improve long term 

retention (Gentner, 1989). 

We have identified three aspects of real world examples that characterize the analogies we 

used to illustrate or introduce algorithms at the conceptual level: 

•    Interactivity- This refers to the level of activity required by the user to receive the 

analogy such as passively-viewed static text and diagrams, a paced animation (where the 

user controls the playback tempo of an animation sequence), a simulation (where the 

user inputs values into a simulation program that processes and reports results), or a 

game (where the user competitively interacts with the program). We implemented 

examples that involved each of these various levels of user interactivity. At the simplest 

level, the bubble sort analogy simply provided a real world example of bubbles that rise 

in a flask of water. The simplest analogy provides no more than an example for the user 

to associate the name of the algorithm to its most basic behavior. Another level allowed 

the user to view an animated, user-paced example. The most complex were the analogies 

that were interactive, almost approaching a simulation for the user to explore. For 

example, the Merge example showed the student, using two stacks of cards, how the 

merge operation worked, then allowed the student to try merging the cards in a race 

against time. In the Shortest Path analogy, students were shown how the algorithm 

worked by testing various paths until the lowest fare was determined, then randomly 

changed the fares and let the student 'try his hand' against the analogy by clicking on 

cities that would be on the shortest path. 
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• Fidelity- This refers to the similarity of the mapping of attributes and relations between 

the source and target domains. A good analogy should closely parallel the central 

properties of the algorithm. If the analogy is too 'different', then it stands a very good 

chance of confusing the student, or imposes an excessive cognitive load in trying to 

bridge the components of the analogy with the algorithm, defeating the purpose of using 

an analogy. Gentner (1989) identifies several levels of similarity: literal similarity 

(where the attribute and relational mappings are one-to-one), mere appearance (where the 

attributes match but the relations do not); abstraction (where attributes don't match but 

the relations do); and anomaly (where nothing maps). Using these terms, our work deals 

with analogies with literal similarity and mere appearance to the algorithms in our 

system. 

• Realism- This refers to how common the chosen example might be. Analogies that 

bring to mind common, every-day activities or processes are more likely to lead to better 

comprehension and long-term retention. Ideally, the example should represent an event 

or situation that everybody has witnessed or experienced. The more a student can relate 

to the analogy, the richer the content the analogy brings to the learning process. 

While we look optimistically to the use of analogies and examples to introduce and illustrate the 

algorithms to students, we recognize that their use can also present problems. Good analogies 

take effort and thought by the designer to create. Analogies take thought for the student to 

understand and mental effort to build the referential connections between domains. Analogies 

draw from human experience which is different for each individual, so what constitutes a good 

algorithm for some might be quite confusing to another. Furthermore, there will certainly be 

algorithms for which no commonly available example exists. 
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3.1.4. VIEWS AT MULTIPLE LEVELS 

Our framework incorporates the ability to view algorithm behavior in various levels of 

detail. Studies indicate improved results when multiple views are employed in large problems 

(Muthukumarasamy & Stasko, 1995; Robertson, 1991), and scaffolding theorists support the idea 

of providing students with levels of detail (Guzdial & Kehoe, 1998). At the highest level of our 

framework, a 'Conceptual View' introduces the algorithm in general terms accompanied by a 

real world analogy. Next, a "Detailed View" focuses on and animates specific algorithmic 

operations in tandem with pseudocode highlighting and textual explanations. Finally, animations 

in a "Populated View" show the algorithm's aggregate performance and behavior on large data 

sets. This multi-level design approach addresses the debate by Byrne et al (1996) over whether 

animations are better suited for presenting the 'big picture' or for illustrating details. They 

stated: "There is the paradoxical problem that an animation that shows the big picture or 

emerging qualities might be appreciated only by those who already understand the algorithm at 

the mechanical level." 

3.1.5. SEMANTIC CHUNKING 

Most animations provide playback capabilities in the form of VCR-like controls, 

allowing the user controls such as Forward, Pause, and Cancel. A novel feature of our 

framework is what we call 'semantic chunking' which entails subdividing the animation into 

logical operations at different levels of detail, and allowing the user to control the granularity of 

the playback. The concept of chunking deals with the practical limits of a person's short term 

memory. Miller (1956) states that the average person recognizes about seven units or chunks of 

information at a time for retention in short term memory. The size and complexity of each chunk 

is small with novices, but grows with experience as smaller chunks are clustered into larger 
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concepts (Vessey, 1985). Our framework presents algorithm animations in discrete chunks 

accompanied by explanations of the specific actions being accomplished. By chunking 

animations into meaningful "bite-sized" pieces and providing logical pauses between chunks, the 

student is able to better digest the abstract, dynamic information being presented. Allowing the 

student to adjust the size of chunking tailors the flow of information to meet individual needs. 

This is in stark contrast to most current algorithm animation systems which present the detailed 

dynamics as a one-shot, stand-alone show that is entertaining to watch but tends to obscure the 

very details a student needs to learn. 

We determined that the following levels of chunking needed to be implemented for our 

prototype system: 

• Statement level- pause the execution at each logical step of the algorithm. 

• Pass- pause the execution upon completion of a logical unit of statements, such as a 

logic operation or a single pass through an iterative sequence. 

• Completion- allow the execution to proceed to completion. 

Most animation systems we reviewed implemented statement level pausing, and virtually all 

allowed the animation to proceed to completion. Some added a feature to alter the speed of the 

animation, similar to a fast-forward button on a VCR, but to our knowledge, no system explored 

chunking levels in the way proposed above. Our work proposes three levels, but future research 

may discover that more levels are needed to adequately 'decompose' the semantic structure of 

more complex algorithms. 
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3.1.6. PURPOSEFUL INTERACTION 

Our framework emphasizes encouraging student participation by allowing rich 

interactions with the animations and using probes or questions that stimulate thinking and foster 

self-explanations. The central notion of constructivism is that understanding and learning are 

active, generative processes (Soloway et al, 1996) involving self-explanation (Chi, Bassok, 

Lewis, Reimann & Glaser, 1989), problem solving and reflective articulation (Narayanan et al., 

1995). Experiments conducted by Lawrence et al. (1994) indicate a learning advantage for 

students who had active involvement in the creation of input values to algorithm animations. 

Other researchers espouse incorporating animations in an active learning environment rather than 

a passive viewing one, that allows students to interact with the data (Stasko et al, 1993; 

McWhirter, 1996; Pierson & Rodger, 1998; Sangwan & Korsh,1998), or go so far as to have 

students build their own animations in the role of an instructor (Stasko, 1997; Naps & Bressler, 

1998; Dershem & Brummond, 1998; Ford, 1993). In contrast, research in different domains 

indicates that passively watching an animation does not facilitate learning (Hundhausen, 1996). 

Therefore, the visualization framework we propose incorporates a variety of features to stimulate 

purposeful interactions. 

Our framework supports interaction at the data input level by prompting students to input 

data sets of their choosing in order to explore algorithm behavior more thoroughly. Additionally, 

our framework supports reflective thought and self-explanation through use of questions that are 

posed periodically to the student. The simplest form is called a "tickler", which is a question that 

pops up in random order but always in an appropriate context. Tickler questions are open-ended, 

focus student attention on specific issues, challenge their understanding and promote self- 

explanations to improve comprehension. Their answers are not entered into the computer nor is 
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feedback provided. Below are several examples of tickler questions used in conjunction with a 

specific step of the SelectionSort algorithm visualization: 

• On this pass, which element will move into the leftmost unsorted position? 

• How many swaps will occur in this pass? 

• How many passes will it take until the remaining values are in place? 

• What will the inner loops beginning and ending values be? 

• As the sort progresses, the boxes to the left side get grayed-out...Why? 

• Could you write the pseudocode for this algorithm? 

Another way to encourage self-reflection is to prompt for predictions about expected 

actions or outcomes. As with tickler questions, verifying correctness is left to the student and not 

checked by computer. Unlike ticklers, the computed result is presented to the user for 

comparison. An example of a predictive question for the SelectionSort algorithm would be to 

ask the student to predict how many comparisons (or swaps) the algorithm will perform for the 

entire execution of a selected data set, then present the actual tally upon completion. 

The last type of question we employ are questions for which computer validation is 

performed and feedback provided. These questions can be true/false, multiple choice, and 

involve orderingWe also place multiple choice questions, requiring students to enter answers in 

order to proceed further, at "articulation points" between modules of the visualization. In this 

case, immediate feedback is provided by the system. 

Posing questions will help combat a shortcoming reported in other multimedia systems 

called the 'TV syndrome' or the 'hands-on, mind-off situation by making student interaction 

active and purposeful. These questions are tied to learning objectives set out by the designer. 

These questions and feedback help students self-diagnose their learning and allow reflection on 

what they know, what they don't, and where to find relevant information. 
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3.2. PROTOTYPE DEVELOPMENT 

To test the theoretical framework for the hypermedia visualization system described in 

the previous sections, an algorithm visualization prototype needed to be constructed and 

empirically tested. The prototype system that implements the framework is called the 

Hypermedia Algorithm Visualization System (HalVis). HalVis is written using Asymmetrix 

Toolbook, a prototyping and hypermedia authoring environment, to test the components of the 

framework. As of this writing, it contains visualizations of four sorting algorithms (BubbleSort, 

SelectionSort, MergeSort and Quicksort), the Merge algorithm, and one graphing algorithm 

(Shortest Path). A number of empirical studies using these algorithm visualizations have been 

conducted. The sections below describe the architecture of the HalVis prototype in its current 

form. Subsequent chapters present results from the empirical studies conducted to validate and 

analyze the framework. 

3.2.1. HALVIS ARCHITECTURE 

HalVis has been constructed using five main modules, forming an architectural template 

for algorithm visualizations (Figure 3.1). The modules are the Conceptual View, the Detailed 

View, the Populated View, the Questions module and the Fundamentals module. Each algorithm 

is presented using the template described below. 
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Alg#n 

I Alg #2 

Alg#l 

I 
Conceptual View 
Real world analogy 

introduces basic 
operations 

Questions 

Detailed View 
shows specific steps 

using animation, text, 
pseudocode and data 

structures 

Questions 

X 

Populated View 
comparisons & 

aggregate 
performance on large 

data sets 

Questions 

z 
Fundamentals 

Figure 3.1. The HalVis Architecture 

3.2.2. FUNDAMENTALS MODULE 

This module contains information about basic building blocks common to virtually all 

algorithms. Examples include Comparing & Swapping Data, Looping Operation, Recursion, and 

so on. Topics can be added to the Fundamentals module as needed to address student's prior 

knowledge or the prerequisites of a particular algorithm. Generally, this module is accessible 

only through hyperlinks from other modules, so that the basic information is presented on 

demand (in response to a learner request in the form of clicking on a hyperlink) and in context (of 

algorithm-specific information within which the hyperlink is embedded). 
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3.2.3. THE CONCEPTUAL VIEW 

This module introduces a specific algorithm in very general terms using a real world 

analogy. We wanted examples that mapped closely to the algorithms being studied, and gave 

high priority to having the properties discussed in Section 3.1.3 (fidelity, interactivity and 

realism). In most cases, we created the analogies and examples based on personal experiences or 

analogies we had seen used effectively in other classes or textbooks. An example of each of the 

conceptual view screens and the associated analogy implemented in the prototype is listed in 

Table 3.1 and shown in Figures 3.2-3.14. For instance, BubbleSort (Figure 3.2) is introduced 

using a flask of water with bubbles that rise to the surface according to their size (Figure 3.3), 

starting with smallest bubbles and gradually working up to the largest ones. Figures 3.4 and 3.5 

show screens from the conceptual view of the MergeSort algorithm, where cards are animated to 

illustrate dividing and merging to create a sorted sequence. Some analogies are more elaborate 

and interactive than others. For example, two of the analogies (Merge and Shortest Path) are 

presented as animated examples followed by a game/simulation that lets the student interact with 

the example while following the operations of the algorithm. This module uses animations, text 

and audio to provide the student with a "big picture" description, a visual example to aid long- 

term retention, and sufficient bridging information to proceed from the visual elements in the 

analogy to the data structures and algorithm operations in later modules. 
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Algorithm Analogy employed Interactivity Fidelity Realism 
Bubble Sort Bubbles in a flask that 

rise to the surface 
•    None Mere appearance High 

Selection Sort A line of people of 
various height that need 
to be placed in order. 
The tallest person of 
each pass would raise 
his hand 

•    Paced animation Literal similarity High 

MergeSort A deck of cards •    Paced animation Literal similarity Medium 

Merge A deck of cards •    Timed 
simulation 

Literal similarity High 

Quicksort A line of people of 
various height that need 
to be placed in order. 
Groups split around a 
'pivot' person 

•    Paced animation Literal similarity Medium 

Shortest Path Airfares between 
various connecting cities 
and a common 
destination 

• Paced animation 
• Randomized 

simulation 

Literal similarity High 

Table 3.1. List of Analogies Used in HalVis 



55 

Objective jThls screen provides the basic idea of the Bubble Sort algorithm using a real-world example 

lap- 
(S  Men« 

Bubble sort gets its name from the 
world of physics, where bubbles in 

water rise to the surface. 
Generally, when a bubble is 

knocked loose and begins its 
ascent, it continues till it rises to 

the surface. Usually, a bubble will 
knock into and move around other 

bubbles on its way. 

In Bubble Sort, we let the smallest 
(or largest) item float to the top of 
the list, then repeat for the next 
smallest, then the next, until all 

Kerns have bubbled up (or down) 
to their proper place. 

!    Animate Bubbles 

Figure 3.2. The Conceptual View Screen of the Bubble Sort Algorithm 

Figure 3.3. The Bubble Sort Animated Analogy 
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Objective JTbis screeTTprotfides the basic idea of the Selection Sort algorithm using a realworld example 

< Menü > 

Select sort works like kids lining up at 
school when the beH rings. They assemble 
in random order. To put them in order, the 
the teacher scans (or "passes') down the 
Pne, selecting the shortest person to trade 
places with whoever is at the head of the 

fine. 

ft 
j*^MJd^;!3!MI^.S 

Then the teacher scans the remaining 
students to find the next smallest person, 

trading Hiem with the person in the second 
position. Then the third shortest is 

selected and mimed into the third slot, and 
so on until everyone in the line is in order. 

Show Me the Rest 

Figure 3.4. The Conceptual View Screen of the SelectionSort Algorithm 

Figure 3.5. The SelectionSort Algorithm Animated Analogy 
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Objective [This screen provides «he basic Idea of the MergeSort algorithm using a real-world example 

Introduction to MergeSort < Menu > 

MergeSort takes its name from 
the fact that it uses a merge 

procedure to create an 
ordered sequence.   In fact 

uses just two simple 
operations, one that splits a 
sequence into two parts and 

another that merges two 
sequences into a single, 

ordered one. 

Starting with a single dataset, 
MergeSort splits it into two 
halves, recursively sorts the 

halves, and merges the halves 
back into a single dataset. 

Show Me The Split Operation 

Figure 3.6. The Conceptual View Screen of the MergeSort Algorithm 

P  
*% 

Mr. ISA 

2 
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* 
»♦ 
♦ 
♦5 

■ 

* * 
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* 
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10 
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1    » »10 4 

5 

♦♦♦ 
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2 
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Figure 3.7. The MergeSort Algorithm Animated Analogy 



58 

Objective [This screen provides the basic idea of the Merge algorithm using a real-world example 

Introduction to Merging j< Menu > 

Merging things together is a common task. 
For example, automobile traffic merges from 

one highway arto another. Companies merge, 
forming a single corporation where 2 once 

existed. 

In computers, we often must merge data 
from 2 streams into one, and usually we want 

the result to be ordered. 

Here, we are given 2 stacks of cards that need 
to be merged into a single, ordered deck. 
Basically, we compare the top item of each 

stack and move the smaller of the two into the 
first available position of the finished stack. 

We continue doing this until aNthe Kerns haue 
been moved. 

Show Me the Merge Operation 

H^*C:M5rJ^jQ*lm.?l 

Lets begin 

This game pits vou against the clock.  The object is to click 
on the card that the MERGE algorithm would choose in the 
least amount of time and with the fewest errors.  The timer 
begins when vou dick OK 

w 

Figure 3.8. The Conceptual View Screen of the Merge Algorithm 

Merge 
l 

repeatedly 
compares the 
top two cards *v 

and 
moves the 
smallest 

♦ u i 
♦♦ i i 

♦♦♦ >♦♦ u. 
♦ ♦ ♦ ♦♦ ♦ ♦ 

• 
*! ♦5 4 *♦? ♦♦; 

• ♦ 

Figure 3.9. The Merge Algorithm Animated Analogy 
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Lets begin 

r* Tt 
A 
J^ 

■•M 
This game pits you against the clock. The object is to click 
on the card that the MERGE algorithm would choose in the 
least amount of time and with the fewest errors.  The timer 
begins when you click OK 

OK 

Complete! 

You took   37     seconds 

And made   0       Mistakes 

AL 
♦ 

♦ 
A 

2 

♦» 

2 

3 
*   ♦ 

♦s 

4 

4 

5 S 
♦♦♦ 
♦ ♦ 

3 

• ♦ 
♦•1 

10 

**• 

w ww 

Figure 3.10. The Merge Algorithm Interactive Simulation 
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Objective (This screen provides the basic idea of the Quicksort algorithm 

Menu Introduction to Quicksort 

Quicksort works by choosing an arbitrary 
element, called the pivot item, and 

segregates aH the items in the group 
based on whether they are larger or 

smaller than the pivot. When complete, the 
group is partitioned into two subgroups, 

one composed of elements bigger than the 
pivot and another composed of elements 
smaller than the pivot. The pivot stands 

between the two subgroups. 

Show Me the First Partitioning J 

Hext, Quicksort takes these two 
subgroups, and performs a Quicksort on 
each of thefn-^eventuany stopping when 

the suUists contain just 1 value, and are by 
default, in order within themselves. 

Show Me the Rest 

Figure 3.11. The Conceptual View Screen of the Quicksort Algorithm 

Howdy, man name is Mr Phot! 
Shorter people to rny left 

tellerpeoptetorny right, please... f 

First, we pick 
someone in the group 

and use him as the 
standard (or pivot) to 

divide the group.... 

Figure 3.12. The Quicksort Animated Analogy 
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Objective [This screen provides the basic idea of the Shortest Path algorithm using a real-world example 

Menu Introduction to Shortest Path Algorithms 
Determining the shortesMeast-cost path 

between linked objects is a common problem 
we deal with. For example, in the airline 

industry, cities are linked by jets that often stop 
in other cities on the way. Consumers often 

find that the cheapest route is not the shortest 
one, as depicted in the «ample below. 

The Shortest Path (SP) algorithm finds the least 
costly path from a selected starting point to 

every other poM of a connected group. It does 
this by considering the possible routes 

between places in a systematic way: from the 
starting point, the cheapest of the possible 

flights one city away is chosen. Next, it 
chooses the cheapest of the flights from either 

the starting point or the city just chosen one 
hop away. On the 3rd pass, the algorithm picks £ 
the 3rd shortest route, then the 4th, and so on 

until an cities hate been «sited. Each pass 
finds the shortest path to one more dry. Try 

the esample below to see how it works: 

If you feel up to a dnlenge, you can try sowing 
the SP problem for yourself. Click on the 

button below to set up some ficticious rates, 
then click on the cities that you think are on the 

SP from Montgomery to Cancun 

Chicago 

Dalhs 

Let me tjy 

Figure 3.13. The Conceptual View of the Shortest Path Algorithm 

CMe^a 

At üils point, we have confirmed the cheapest 
way to get to each city except our final 

destination, or ail the fares seen so far, the 
cheapest we know of is the connection through 

Chicago and New Yorit on to Cancun. That 
represents the cheapest path for us. 

Figure 3.14. The Shortest Path Algorithm Animated Analogy/Simulation 
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3.2.4. THE DETAILED VIEW 

This module describes the algorithm at a very detailed level using two presentations. One 

consists of a detailed textual description of the algorithm alongside a pseudocode representation of 

it (Figure 3.15). Embedded in the text are hyperlinks to related information in the Fundamentals 

module. The second presentation (Figure 3.16) contains four windows that depict various aspects 

of the algorithm's behavior. The Execution Animation window shows how steps of the algorithm 

modify data structures using smooth animation. The animation is chunked at multiple levels of 

granularity corresponding to semantically meaningful units of the algorithm's behavior, with the 

level of chunking selectable by the learner. At the lowest level, the animation displays the 

execution of an individual statement, pausing for the learner's signal to proceed. The next level 

corresponds to a logical operation, like completion of a single pass in a loop. At the highest level, 

the animation proceeds to completion without pausing. The Execution Status Message window 

provides comments and textual feedback to the student about key events and actions during 

execution. This is also available as an audio commentary. The Pseudocode window shows the 

steps involved in the algorithm, which are highlighted synchronously with the animation. Finally, 

the Execution Variables window displays a scoreboard-like panorama of the variables involved in 

the algorithm and their changing values. Before launching the animation, students can change the 

data input to the algorithm as well as the speed and granularity of animation and feedback using a 

control panel (Figure 3.17). Execution of each step of the algorithm affects the display in the four 

windows simultaneously. Figure 3.16 shows seven data elements to be sorted using the MergeSort 

algorithm. When the user presses the ShowMe button, the four windows spring to life, moving the 

seven data items as needed and pausing between chunks until the algorithm is finished. HalVis 
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intentionally limits the number of data items in the Execution Animation window to focus attention 

on the micro-behavior of the algorithm. 

Objective Describe the essential behaviors of the MergeSort algorithm and introduce high-level pseudocode 

Topics' 

Bade 
Description of MergeSort 

MeraeSort is a recursive algorithm that uses a DMde-and-Conauer 
approach to generate sorted sequences. The essential idea is to djrfde the 
nput tst recursively into halves urrtl one element remains, then make 

proc mergesortCArray) 
if Array contains more than 1 element 
Jrtddte = (tengthCArray» '2 

►^LeftHalf = mergesort(Arrayfl .Mddle]) 

wder) into a 3rd 1st (also in order).                                                    ^r 

MergeSort has 4 simple operations:                                          ^r 

1. Split the input Mohahies (here it simplyfinds the midpoint) 
2. MergeSort the left hair 
3. MergeSort the right haw 
4. Merge the two sorted halves into a single sorted äst 

MergeSort calls itself with half-sized Bsts until it reaches the base case, 
rite base case is when the input to MergeSort contains only 1 element and 
cannot bB divided any further. BydefauH, a list of one element is in order,    . 
so what gets returned is an ordered sequence of 1 element to be merge^r 
■nth another partial (but ordered) 1st.                                              S 

rite algorithm for Merging two sequences into one is shown here and 
described in more detail by following the Merninn link. 

Jecause MergeSort splits the input in half, this algorithm is very efficient, 
mmtwiti "Nl on N" steps. This is much loss than the N squared comptexity 
if Bubble and Selection Sort algorithms. So, for a list of SO elements, 
MergeSort requires approximately 300 steps whereas Bubble sort would 
require 2500! 

RightHalf = mergesort(ArrayIMidc«e+1 ..N]) 
ResuJArray » merge(LeftHalf,RigftHarO 
Return ResultArray 

else 
Return 

endif 
endproc 

Proc merge(LeftHall .RightHalf) 
f loop 

it leading Sem in LeftHalf < leading item in RightMalt 
append leading item «i LeftHalf to Result 

else 
append leading item v\ RightHalf to Result 

endif 
until LeftHalf or RightHalf is empty 
while LeftHalf contains elements 

append remaning items from LeftHalf to Resut 
endwtiile 
while RightHatf contains elements 

append remaining items from RightHalf to Result 
endwhBe 
return Resul 

end 

Figure 3.15. The Description Screen for the MergeSort Algorithm 
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Objective   Comprehend the structure and function of the MergeSort Algorithm 

Detailed Look at MergeSort Topics 
Bad: 

KSSEfiaSl jShö'wWe -> 

Execution Animation 
The Merge Sort Algorithm 

HS 
4        9 

aaa 
Execution Variables 

proc mergesont Array) 
iftength( Array)>1 

...M«Ä= OengthC Array)) / 2 
LeftArray = mergesort(Array[1 .MddleD 
RightArray _= rnergesra^AirayfMjddle+1^.N$ 
ResutArray = merge(LeftÄrray, RprtAffay)^ 
return ResutArray 

Recursion Depfti Let   Middle    Right 

m    n~ 
Comparing      IComparisons 

i   *r~  i 1 1     4 

Total Calls 

1     8 

Execution Status Messages 

CaSng MergeSort for elements 1 thru 2 oSpRting at #1 
Base case reached; Returning element 1 for merge 
Base case reached; Returning element 2 for merge 
Merging subEsts 1 and 2 

Comparing 1 and 2 ...moving 2 
lushing leftside element 1 

Caffing MergeSort for elements 3thru 4 oSpRting at # 3 
Base case reached; Returning elemert 3 for merge 
Base case reached; Returning elemert 4 for merge 

Press here to continue Animation 

Figure 3.16. The Detailed View Screen of the MergeSort Algorithm 

Sort Controls 

Sort Order 

# Ascending 

O Descending 

; Speed Controls 

Animation Execution Movement Speed 

<S> Pause at Each Step © Slowest Speed 

O Pause at Each Pass O Medium Speed 

O Dorrt Pause O Fastest Speed 

Source of Data for Sorting 

O Use Default Data 

® Let Me Enter Data 

I Use the Spinners below to setthe values you want loaded for sorting 

Item 1     Kern 2 Item 3     Item 4 Item 5 ItemC Item 7 

Figure 3.17. A View of the Control Panel of the Detailed View Screen 
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3.2.5. THE POPULATED VIEW 

This module is intended to provide students with an animated view of the algorithm on 

large data sets to make its macro-behavior explicit. In this birds-eye view (see Figure 3.18), many 

of the details presented in the detailed view are obscured to enhance the student's focus on the 

algorithm's performance. Notice, for example, that the pseudocode is not shown. The variables 

are not shown as numbers but rather as colored bars. Animations and animation controls in this 

module are similar to those in previous systems, but there are two novel features. One is a panel of 

counters that show pertinent performance-oriented information such as number of comparisons, 

swaps, recursive calls, and so on. Another is a facility for the student to make a prediction about 

different parameters of algorithm performance and then compare those against the actual 

performance when the animation is running. When the learner presses the ShowMe button, the 

algorithm prompts for predictions, initializes the bars (data) into random, ascending or descending 

order, and proceeds to execute the algorithm. During execution, the bars change color and move 

about, accompanied by audio explanations and cues. Color coding is used to convey information 

such as already processed data and data elements currently being processed. 
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Objective bbserue and compare how the MergeSort algorithm works on larger sets of numbers 

MogeSort in Action 
% 

Toptes 

Back 
> 

Show me: 

fiterji£So^ | 

..iiiiimilt .HI 

SMSJCCt SMOCfl 

(or press LETT moose barton Amng 
alggxiUuii execution to adpst) 

J Fastest 
J 

Medium 

j Slowest 

ll .llll 

Color Legend 
I   I Recursive CaH 
upending 

Figure 3.18. The Populated View Screen 

3.2.6. QUESTIONS MODULE 

This module presents the student with several questions at articulation points between the 

other modules to facilitate and help them self-assess comprehension. A combination of multiple 

choice, true-false, and algorithm debugging questions are provided. Students get immediate 

feedback on their answers (Figure 3.19). HalVis also uses tickler questions as shown in Figure 

3.20. The context-sensitive ticklers help focus the student's attention on key aspects of the 

algorithm being studied. Collectively, the use of questions promotes self-reflection, self- 

explanation, and sparks student interest. 
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4.        VALIDATING THE FRAMEWORK 

We conducted empirical evaluations to validate the effectiveness of the framework 

outlined in the previous chapter. This chapter describes how the experiments were conducted 

and the results that were obtained. 

4.1. EFFECTIVENESS: WHAT ARE WE LOOKING FOR? 

Effectiveness is a broad concept with several aspects to consider before diving into formal 

research. The factors that we believe are significant to consider are: 

• Comprehension: This refers to how closely the student came to meeting the learning 

objectives set forth by the instructor. Generally this is measured by testing the student. 

A system that improves comprehension over alternative systems would be regarded as 

more effective. Alternatively, this could be referred to as short-term retention. 

• Retention: This is a measure of comprehension over time. Research indicates humans 

have short term memory, capable of retaining small bits of information for a matter of 

minutes, and long term memory, capable of recalling information for years. A system 

that improves long term retention is clearly more effective. 

• Speed: How long did it take the student to meet the learning objectives? A system that 

helps students learn material more quickly without sacrificing the other factors would be 

considered more effective. 

68 
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•    Satisfaction: This refers to how engaging the system is to the student. Before and 

during the session this could be called motivation. After the fact, this is often referred to 

as satisfaction. Either is a difficult thing to measure quantitatively, and are generally 

reported as subjective figures. Generally, a system that fosters greater learner 

satisfaction without negatively affecting the other measures should be considered a more 

effective system. This is not always the case though. 

Notice that some of the measures can lead to a conflict. Consider speed and satisfaction, for 

example. Because a motivated student is more likely to spend greater amounts of time with 

software that is engaging and rewarding, it does not necessarily follow that such a system is less 

effective. Nor does it follow that a system that takes less time but has extremely low satisfaction 

is better or worse either. Researchers simply have to determine which measures are most 

important for their domain. In our experiments, we focus on comprehension and retention as the 

primary measures of the effectiveness of our theoretical framework. We believe (and hope) that 

student satisfaction with our system will be very positive. We report speed measures 

anecdotally. 

We justify this position by observing that previous empirical research resulted in virtually 

unanimous student satisfaction with algorithm animations as a learning method, but none showed 

that the use of animation leading to increased student performance. Hence, for our purposes, we 

recognize the importance of speed in learning, but place higher priority on achieving higher 

comprehension, retention and satisfaction. In the sections that follow, we use the terms 

comprehension and 'learning' interchangeably, referring to the improvement in student 

performance as measured by the difference between individual pre-test and post-test scores. 
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4.2. EXPERIMENTS WITH HYPERMEDIA ALGORITHM VISUALIZATIONS 

We conducted experiments to evaluate and substantiate the effectiveness of hypermedia 

visualization of algorithms, specifically to validate our belief that a hypermedia system 

incorporating text, images, and animations would be an effective tool for teaching students about 

algorithms. Specifically, our experiments were designed to compare using the Hal Vis framework 

to learn about algorithms with the methods currently used by instructors to teach their students. 

Common teaching instruments include textbooks, lectures, and laboratory experiences. More 

recently, instructors have also started using algorithm animations (Stasko, 1997). A survey of 

computer science instructors (Badre et al., 1991) showed that over 80% of instructors use at least 

one of these methods to teach algorithms to students. Previous experiments on the effectiveness 

of algorithm animations as teaching tools compared experimental groups employing a 

combination of instructional media, as shown in Table 4.1. 

Research Reference 

Lawrence et al. 1994 

Crosby & Stelovsky 1995 

Stasko et al. 1993 

Badre et al. 1991 

Byrne et al. 1996 

Subj. 
Level 
K13 

K13 

K17 

K14 

K15 

Comparison Groups 

Animation + Lecture + Laboratory 

Animation + Lecture + Homework 

Animation + Text 

Animation + Handout 

Animation + Video Lecture + Text 

Slides + Lecture + Lab 

Slides + Lecture + Homework 

Text 

Lecture + Handout 

Diagrams + Video Lecture + Text 

Table 4.1. Prior Experiments Involving Algorithm Animation 

A criticism of previous empirical research was a failure to sufficiently isolate the 

visualization from other learning techniques (Hundhausen, 1996). To avoid confounding the 

various factors, we designed experiments to specifically compare our visualization framework 

with learning from a textbook (Experiment I), learning from a textbook that includes completing 
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exercises (Experiment H), and learning from a lecture (Experiment HI). While we acknowledge 

that most instructors use a combination of teaching methods, our approach is to isolate each 

method and compare it with our AV framework for statistical analysis. Lastly, we designed an 

additional experiment (Experiment IV) to replicate the environment used by several previous 

researchers who combined text with animation and compared it to the hypermedia-only 

approach. 

Our hypothesis was that students would learn more effectively using Hal Vis than from 

other teaching methods, as indicated by their performance in pre-tests and post-tests. The five 

individual experiments are summarized in Table 4.2, showing the student level, the learning 

media used by the comparison groups, and the algorithm(s) studied. The first experiment 

compared learning with HalVis to learning from textbooks alone. To gain insight into the effects 

of algorithm complexity and student ability, the experiment had two components, one that 

exposed novice students to a relatively simple algorithm, and the other that exposed more 

advanced students to two algorithms of moderate complexity. Extending this comparison further, 

Experiment II compared learning with HalVis to learning from a compilation of the best 

descriptions and depictions extracted from a survey of 19 textbooks followed by solving a set of 

exercises. The third experiment compared learning from HalVis to learning from lectures. 

Finally, the fourth experiment compared learning from HalVis to learning from the combination 

of a typical algorithm animation and text. These experiments, we felt, would help us determine 

the comparative effectiveness of the HalVis framework. In these experiments we used pre- and 

post-tests to measure students' ability to recognize and reorder pseudocode descriptions of 

algorithms, mentally simulate algorithmic operations, and predict resulting data structure 

changes. We did not differentiate between visual and verbal learners since HalVis contains rich 

textual and visual presentations to support both kinds of learner dispositions. 
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Level Comparison Groups Algorithm(s) 
Experiment I a K14 HalVis Text + Diagrams MergeSort (MS) 

Experiment I b K15 HalVis Text + Diagrams MergeSort 
Quicksort (QS) 

Experiment II K14 HalVis Text + Diagrams + Exercises BubbleSort (BS) 
SelectionSort (SS) 

Experiment HI K14 HalVis Lecture SelectionSort 
MergeSort 

Experiment IV K15 HalVis Text + Animation Shortest Path (SP) 

Table 4.2. Experiment Summary 

The general format of each of the experiments involved: 

• Gathering participants from appropriate computer science courses. 

• Dividing participants into balanced, matched groups. Balanced groups were necessary to 

ensure that results were not skewed or biased by differing group capabilities. The 

matched groups were created by random assignment from a rank-ordered list of subjects 

based on results of a demographic survey that gathered information regarding academic 

performance and potential (GPA, ACT/SAT scores, class standing, etc). In experiments 

involving two groups, successive pairs of subjects were drawn from the rank-ordered list 

and randomly assigned to one group or the other. In experiments involving four groups 

like the ablation studies in the next chapter, four subjects were drawn from the list at a 

time, and randomly assigned to one of four groups. Finally, after the matched groups 

were created, the treatment condition that each group was to receive for the experiment 

was randomly designated to eliminate any possibility of bias. 



73 

• Administering a Prior Knowledge Survey ("pre-test") to assess pre-existing individual 

knowledge about the algorithm to be studied, thereby establishing a baseline from which 

to measure improvement more precisely. The pre-test was different from the 

demographic survey used to create the groupings, in that the pre-test measured 

algorithmic knowledge about the specific algorithm the group was about to study in the 

experiment whereas the survey merely gathered information about general academic 

potential. Without a pre-test, measuring individual improvement would be difficult and 

could invalidate our results. 

• Conducting the experiment. 

• Administering a Knowledge Improvement Survey ("post-test") to evaluate the 

participant's knowledge about the algorithm following the experiment. 

• Gathering student comments and impressions about the software they used in a survey, if 

appropriate, and examining the logs that recorded student activity while using the 

hypermedia software. 

4.2.1. EXPERIMENTS IA AND IB: COMPARISON OF HALVIS WITH 

TEXTUAL LEARNING 

This experiment consisted of a pair of studies intended to explore our hypothesis that 

students would learn more effectively using the HalVis animation-embedded hypermedia 

framework than by printed materials from a textbook. We conducted the experiment in two 

phases using similar procedures but students at different levels in their computer science 

curriculum. The first experiment involved 28 novice students enrolled in an introductory data 

structures and algorithms class. The second experiment employed 22 more experienced students 

learning two algorithms of greater sophistication. 



74 

4.2.1.1.  Experiment la 

Subjects: 

The experiment involved 33 undergraduates enrolled in an introductory data structures 

and algorithms course at Auburn University. Subjects received course credit for their 

participation. In the first week of the quarter, subjects completed a demographic survey 

providing information such as GPA, ACT and SAT scores. We used this information to rank 

students and create a matched pair of groups: one group (called the "Text" group) would learn 

about the MergeSort algorithm using textbook descriptions, and another group (called the 

"Algorithm Visualization" (AV) group) would learn the MergeSort algorithm using the HalVis 

algorithm visualization tool. The groups were initially balanced but five students did not 

complete all facets of the experiment and their data is not included. Of the 28 students 

completing all aspects of the experiment, twelve students were in the Text group and sixteen 

students were in the AV group. The loss of the five students did not imbalance the groups and 

skew the results. The average GPA and ACT score of the Text group was 2.9 and 28, 

respectively. The average GPA and ACT score of the AV group was 3.0 and 27, respectively. 

Materials 

The Text group received a photocopied six-page extract from a textbook (Dale, Lilly & 

McCormick, 1996) that discussed the MergeSort algorithm. The handout included a description 

and analysis of the algorithm, various diagrams, and program code. 

The AV group learned about the MergeSort algorithm using the HalVis system with no 

supplementary materials provided. 

A pre-test/post-test combination (see Appendix B.4.1) measured individual learning 

performance with nine questions that probed conceptual and procedural knowledge about the 

algorithms. Students were tested on their ability to recognize and reorder pseudocode 
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descriptions of algorithms, mentally simulate algorithmic operations, and predict resulting data 

structure changes. The pre-test measured prior knowledge about the algorithm and the post-test 

measured changes resulting from experimental conditions. 

Procedure 

We structured the experiment to follow class lectures covering basic program design and 

fundamental data structures, but precede lectures that covered sorting algorithms. Towards the 

middle of the quarter, participants were asked to complete a pre-test that measured their prior 

knowledge about the MergeSort algorithm. The pre-test results helped us verify that the two 

groups were evenly balanced, and provided a baseline against which to compare subsequent 

changes. The pre-test scores indicated that the subjects did not know this algorithm and that the 

groups were evenly distributed (Average = 27% for the Text group and 28% for the AV group). 

During the following week, the AV group met in a public computer laboratory. They 

were given a five minute introduction to HalVis, which oriented them to the various screens they 

would encounter and provided them with basic navigational tips. The students were then 

assigned to a computer and instructed to interact with the software until they felt they understood 

the MergeSort algorithm. The computers were Pentium-class systems with 15 inch color 

monitors. Subjects were not given any text material to study, nor had they been exposed to the 

MergeSort algorithm in the class prior to the experiment. There was no time limit, so when each 

subject indicated he/she was done, he/she was given a post-test that helped measure knowledge 

improvement. No student in the AV group took more than 60 minutes for the entire experiment. 

On the same day the Text group met in a classroom, and was provided with photocopied 

handout describing the MergeSort algorithm. They were not provided any other information, nor 

had they been exposed to the MergeSort algorithm during class lectures. They were asked to 

learn the MergeSort algorithm from the materials provided, with no time limit imposed. When 
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they finished studying the explanatory materials provided, they were given a post-test and 

allowed to leave. No student in the text group took more than 45 minutes for the entire 

experiment. 

Results 

The overall results are summarized as box plots in Figure 4.1. The box indicates the 

range of entries in the 25* through 75th quartile, and the lines extending to the left and right show 

the range of scores for the entire group. The thick vertical line in the box indicates the mean, and 

the thin line represents the median value for the group. 

The pre-test results indicate that both groups were equally unfamiliar with the MergeSort 

algorithm. The post-test averages show a significant improvement for the AV group over the 

Text group. The AV post-test average was 74% compared to the Text group's 43%, and the 

results are significant for both the overall performance (F(l,27)=10.9, p<0.003) and for 

improvement (F(l,27)=6.7, p<0.015). The statistical summary is shown in Table 4.3. 
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Statistical Summary 

Pre-Test Post-Test Improvement 
(raw) 

Text Group 27% 43% 16% 

AV Group 28% 74% 46% 

F(l,27) 0.01 10.9 6.7 

Significance 
level 

p<0.93 p<0.003 p<0.015 

Table 4.3. Experiment la Statistical Summary 

Experiment la Comparison (MS) 
Text-PreTest 

1                          1     1                    |_  i                  i   i              r 
Text-PostTest 

1                                         III 1                                         III 

AV-PreTest 
1                           ||                     1 ., i                           !■                     I 

AV-PostTest 
 r~ II                  \ 1_ 

i                       i                       i 
0                                25                              50 

1 
75 

I 
100% 

Figure 4.1. Experiment la Box Plots 

Figure 4.2 shows the individual pre-test and post-test scores of each subject by group. 

Each participant is indicated by his/her randomly assigned ID number on the vertical axis. Pairs 

of horizontal bars indicate each participant's test performance. The light bars represent pre-test 

performance and the dark bars show post-test performance. No bar is shown when the 

corresponding score is zero. The tables below provide the percentage grade obtained by each 

participant in pre- and post-tests. It is interesting that every subject in the AV group improved 

his/her knowledge, but two subjects in the Text group (Til and T05) actually did worse. 
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Figure 4.2. Experiment I Individual Results, by Group 

Discussion 

These results suggest that novice students perform better in answering conceptual and 

procedural questions about the MergeSort algorithm after learning from a hypermedia algorithm 

visualization than after studying a typical textbook. However, there are several factors that must 

be mentioned to keep these results in perspective. First, one could argue that a different textbook 

could have led to different results. We believe we reduced the possibility of this form of bias by 

using a text that was competitively selected from books reviewed by a group of professors and 

graduate students in the Computer Science Department at Auburn University. While we consider 

the material we used was from a well-written book, Experiment IE was designed to probe this 

issue further. Second, only novice students participated in this experiment. It is possible that 
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more advanced students may benefit more from a textbook explanation of an algorithm. 

Experiment lb investigated this possibility. 

Third, difference in student motivation between the groups could have influenced the 

results. The level of enthusiasm observed in the HalVis group was much higher than in the Text 

group. The novelty of the visualization and the interactive features of HalVis seemed to engage 

the students' interest. In contrast, there was nothing new or uniquely motivating for the Text 

group. Fourth, familiarity with the learning materials provided could have had an influence. The 

Text group did not have to acquaint themselves with a new user interface, software system or 

learning from interactive visualizations. They were all familiar with reading and learning from a 

textbook. The students in the AV group had to contend with a new interface and a different way 

of learning. If this factor indeed played a role, the AV group exhibited a higher level of 

comprehension despite any additional cognitive effort involved in learning the interaction and 

navigation facilities of HalVis. The opposite could also be the case, however, in that the 

computer science students in the Text group might have performed poorly because of a 

pronounced discomfort with printed materials of any kind and would have demonstrated a 

preference for any kind of computerized alternative. 

4.2.1.2.  Experiment lb 

This experiment was similar to Experiment la in that the goal was to compare the 

effectiveness of learning using HalVis to learning from printed materials from a textbook. Our 

aim was to test whether results of Experiment la could be replicated with more sophisticated 

algorithms and higher level students. We asked students to learn the MergeSort and Quicksort 

algorithms. Unlike the previous experiment, these participants completed all components of the 

experiment in one day: a pre-test, learning two algorithms, and a post-test. 
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Subjects 

This experiment involved 22 undergraduate computer science students enrolled in a third 

year algorithm analysis course at Auburn University. Like Experiment la, participants were 

ranked based on academic ability (using on course performance up through mid-term grades in 

the course) and assigned to a matched pair of groups: a "Text" group and an "Algorithm 

Visualization" (AV) group. Students were given extra credit for participating. Eleven students in 

the Text group and eleven students in the AV group completed the experiment. The average 

class mid-term score for subjects in the Text group was 21.5 and 21.6 for subjects in the AV 

group. 

Materials 

The Text group received a ten page photocopied extract from their course textbook 

(Weiss, 1993) that discussed the MergeSort and Quicksort algorithms. 

The AV group learned about the MergeSort and Quicksort algorithms using the HalVis 

system with no supplementary materials provided. 

A pre-test/post-test combination measured individual learning performance with 18 

questions that probed conceptual and procedural knowledge about the algorithms. Students were 

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 

simulate algorithmic operations, and predict resulting data structure changes. The pre-test 

measured prior knowledge about the algorithms and the post-test measured knowledge 

improvement resulting from the experimental conditions. 
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Procedure 

We structured the experiment to precede the class lectures that dealt with sorting 

algorithms. Towards the middle of the quarter, on the day of the experiment, all participants met 

in a classroom and completed the pre-test. Afterwards, members of the AV group were taken to 

a public computer laboratory, while the Text group remained in the classroom. 

In the computer laboratory, the AV group was given a brief navigation-only orientation 

to the HalVis system, then assigned to individual computers to interact with the software and 

learn the algorithms. Students were allowed to take as much time as needed. They did not have 

access to any supplementary materials. As each subject finished interacting with the 

visualizations, a post-test was given. All subjects completed the experiment in less than two 

hours. 

The Text group was given the extract from their course textbook. This contained a 

typical combination of textual descriptions and explanations, diagrams, pseudocode and program 

examples. Like the AV group, there was no time constraint. When a subject signaled completion 

of studying the materials, he/she was given the post-test and allowed to leave. All students in the 

Text group completed the pre-test, studied the textual materials and completed the post-test in 

less than 90 minutes. 

Results 

The overall results are summarized as box plots in Figure 4.3. The pre-test results 

indicate that both groups were equally unfamiliar with both algorithms. The post-test averages 

show a significant improvement for the AV group over the Text group. The AV post-test 

average was 63% compared to the Text group's 44%, and the results are significant for both the 

overall results (F(l,21)=4.96, p<0.038) and for improvement (F(l,21)=9.29, p<0.006). The 
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statistical summary is given in Table 4.4, showing both aggregate and algorithm-specific results 

for each group. 

Statistical Summary 

Pre-test Post-test Improvement 
(raw) 

Text (MS) 44% 53% 9% 

AV (MS) 48% 71% 23% 

Text (QS) 10% 35% 25% 

AV (QS) 4% 55% 51% 

Text (MS+QS) 27% 44% 17% 

AV (MS+QS) 26% 63% 37% 

F(l,21) 0.02 4.96 9.29 

P p<0.89 p<0.038 p<0.006 

Table 4.4. Experiment lb Statistical Summary 

r Experiment lb Comparison (MS&QS) 
*v 

Text-PreTest (MS&QS) 
■ 1 

Text-PostTest (MS&QS) 
■ 1 

AV-PreTest (MS&QS) 
■ 1 

AV-PostTest (MS&QS) 

—                     1 

■- 

1                             1                            1                             1 

0                              25                             50                             75 

1 
100% 

J 

Figure 4.3. Experiment lb Box Plots 
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Discussion 

These results parallel those of Experiment la in suggesting that students perform better in 

answering conceptual and procedural questions about the MergeSort and Quicksort algorithms 

after using a hypermedia visualization system to learn than after studying a typical textbook. As 

shown in Table 4.5, the more advanced status of the students led to higher prior knowledge 

scores for the MergeSort algorithm (44% and 48%), which was much higher than the pre-test 

levels observed in the novice students of Experiment I (27% and 28%). This is not a surprising 

result, since it is reasonable to expect that the more advanced students could have been exposed 

to the MergeSort algorithm before, and even if not, to grasp the essential concepts more readily 

than novice students. Together, these two experiments suggest that learning by visualization 

leads to better comprehension than by printed text for novice and more advanced students. As 

Table 4.5 indicates, AV groups improved their performance by approximately two to three times 

compared to the performance improvement of the Text groups in the two experiments. 

Interestingly, the AV groups in both experiments reached the same level of performance after 

interacting with HalVis though they started off with different levels of prior knowledge. 

Experiment la Experiment lb 

Pre-test Post-test Pre-test Post-test 

Text Group 27% 43% 44% 53% 

AV Group 28% 74% 48% 71% 

Table 4.5. Comparison of Results of Experiments la and lb 

As with Experiment la, there are several factors to consider to keep these results in 

perspective, such as textbook quality, student experience and ability, motivation, and familiarity 
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with learning approaches used in the experiment. This experiment added a significant load to the 

learning task, requiring students to learn two fairly challenging algorithms in one session, as well 

as complete a pre-test and a post-test in the same session. This cognitive load could have 

affected the test performance of both groups. 

4.2.2. EXPERIMENT II: COMPARISON OF HALVIS TO LEARNING FROM 

TEXT WITH EXERCISES 

This experiment was conducted in a similar fashion to the ones previously described, 

involving students relatively new to algorithmic study, and compared the effectiveness of 

learning from HalVis to learning from text and problem solving. The goal was to provide one 

group with the best possible descriptive and depictive printed materials and a set of exercises, in 

order to investigate the limits of learning from HalVis by comparing it with learning from 

carefully designed, detailed textual and diagrammatic explanatory materials coupled with 

problem solving. We chose to use the BubbleSort and SelectionSort algorithms for this 

experiment. While these are relatively simple algorithms, we felt that asking participants in this 

experiment who were novice students, not yet exposed in depth to the subject of sorting, to learn 

both algorithms in one session would represent a reasonable cognitive load. 

Subjects 

The experiment involved 25 undergraduate computer science students enrolled in an 

introductory data structures and algorithms course at Auburn University. Subjects received 

course credit for their participation. In the first week of the quarter, they completed a 

demographic survey providing information such as GPA, ACT and SAT scores. We used this 

information to rank students and randomly assign them to form two matched groups: one group 

(called the "Text" group) that would learn about the BubbleSort and SelectionSort algorithms 

using a handout that we created and then completing a series of problem solving exercises, and 
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another group (called the "Algorithm Visualization" (AV) group) that would learn the same 

algorithms using the HalVis algorithm visualization tool alone. Twelve students in the Text 

group and thirteen students in the AV group completed the experiment. The average GPA and 

ACT scores for the Text group were 2.92 and 28 respectively. The average GPA and ACT 

scores for the AV group were 2.96 and 27, respectively. 

Materials 

The Text group received an eight-page explanation that contained both textual 

descriptions and graphic depictions of the BubbleSort and SelectionSort algorithms, along with 

several exercises. The handout was subjected to a stringent review by a group of faculty and 

graduate students to address the issue of the quality of text used in the previous experiments. 

After reviewing the descriptions, depictions and examples of the BubbleSort and SelectionSort 

algorithms contained in nineteen textbooks published between 1974 and 1997 (Aho, Hopcroft & 

Ullman, 1974; Aho, Hopcroft & Ullman, 1983; Baase, 1988; Dale, Lilly & McCormick, 1996; 

De Lillo, 1993; Hard, 1992; Horowitz & Sahni, 1978; Kingston, 1990; Knuth, 1973; Kozen, 

1992; Manber, 1989; Nance & Naps, 1995; Reingold & Hansen, 1983; Rowe, 1997; Sedgewick, 

1988; Shaffer, 1997; Singh & Naps, 1985; Weiss, 1993; Wirth, 1986), we selected the best 

explanations we could find. These explanations were then edited to increase clarity and merged 

to create a handout containing textual and pictorial explanations of the two algorithms. We also 

developed and included a set of "end of chapter" style exercises in this handout for students to 

solve after perusing the explanations. This handout is provided in Appendix B.5.2. 

The AV group learned about the BubbleSort and SelectionSort algorithms using the 

HalVis system with no supplementary materials provided. 

A pre-test/post-test combination measured individual learning performance with 

questions that probed conceptual and procedural knowledge about the algorithms. Students were 
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tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 

simulate algorithmic operations, and predict resulting data structure changes. A copy of the post- 

test is included in Appendix B.5.1. 

Procedure 

As with the previous experiments, we timed the experiment to follow class lectures 

covering basic program design and fundamental data structures, but precede those that covered 

sorting algorithms. Towards the middle of the quarter, participants were asked to complete a pre- 

test that measured their prior knowledge about the BubbleSort and SelectionSort algorithms. In 

addition to providing a baseline against which to compare subsequent changes, the pre-test 

results also helped us verify that the two groups were evenly balanced. 

The following week, the AV group met in a computer laboratory on campus. They were 

given a five minute introduction to HalVis, which oriented them to the various screens they 

would encounter and provided them with navigational tips. The students were then assigned to a 

computer and instructed to interact with the software until they felt they understood the two 

algorithms. The computers were Pentium-class systems with 15 inch color monitors. Subjects 

were not given any text material to study, nor had they been exposed to the algorithms in class 

lectures. There was no time limit, so when each subject indicated he/she was done, he/she was 

given a post-test that helped measure knowledge improvement. No student in the AV group took 

more than 90 minutes for the entire experiment. 

On the same day, the Text group met in a classroom, and was provided with the handout 

described above. They were asked to read and understand the materials and then to solve the set 

of exercises at the end. They were not provided with any additional information, nor had they 

been exposed to these algorithms in class lectures. When they finished studying the descriptive 
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materials and attempting the exercises, they were given a post-test and allowed to leave. No 

student in the text group took more than 60 minutes for the entire experiment. 

Results 

The overall results are shown in Figure 4.4. The pre-test scores indicated that the 

subjects did not know these algorithms and that the groups were evenly matched (Average = 35% 

for the Text group and 31% for the AV group). The post-test averages show an improvement of 

30% for the AV group to only 22% for the Text group. These results, while indicating better 

learning for the AV group, are not statistically significant as can be seen in Table 4.6. 

Statistical Summary 

Pre-test Post-test Improvement 
(raw) 

Text 35% 57% 22% 

AV 31% 61% 30% 

F(l,24) 0.36 0.32 0.82 

P p<0.55 p<0.57 p<0.37 

Table 4.6. Experiment II Statistical Summary 

The results are summarized as box plots in Figure 4.4. The box indicates the range of 

entries in the 25th through 75th quartile, and the lines extending to the left and right show the 

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the 

thin line represents the median value for the group. The box plots reveal a wider dispersion of 

scores in the post-test results of the Text group, but a much tighter clustering in the post-test 

results of the AV group. 
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Figure 4.4. Experiment II Box Plots 

Figure 4.5 shows the individual pre-test and post-test scores of each subject by group. 

Each participant is indicated by his/her randomly assigned ID number on the vertical axis. Pairs 

of horizontal bars indicate each participant's pre- and post-test scores. The light bars represent 

pre-test performance and the dark bars show post-test performance. The tables below provide the 

percentage grade obtained by each participant in pre- and post-tests. Two subjects in the Text 

group (T06 and T07) and one subject in the AV group (V10) did worse after the experiment than 

they did on the pre-test. This is the first time, in the three experiments conducted thus far, where 

the performance of a member of the AV group decreased. 
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Figure 4.5. Experiment II Individual Results, by Group 

Figure 4.6 shows performance by question (see Appendix B.5.1. for the questions) across 

the two groups for the post-test. For each question on the vertical axis, the horizontal axis 

provides the number of subjects who answered it correctly. It can be seen that only in three 

questions did the text group outperform the AV group: questions 7 and 11 dealing with worst 

case orderings, and question 10 that examined the number of swap operations the SelectionSort 

algorithm would require. 

Figure 4.7 shows performance across pre- and post-tests by the AV group. For each 

question on the vertical axis, the horizontal axis provides the number of subjects who answered it 
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correctly. If none answered a question correctly (Q5b, pre-test), the corresponding bar is not 

shown. This figure illustrates the substantial increase in the number of students answering 

correctly the questions dealing with algorithm recognition (Ql, Q3), behavior (Q6, Q8, Q10, 

Q12, Q14) and data ordering (Q5, Q9, Q13) after interacting with the visualizations of the 

algorithms. 

Discussion 

The combination of using simpler algorithms, significantly improving the text and asking 

students to engage in problem solving had a marked impact on the Text group's performance. It 

improved to a level on par with that of the AV group. Our conclusion from this experiment is 

that AV appears to be as effective for novice students to learn about algorithms as learning from 

carefully crafted textual materials coupled with problem solving exercises. Factors we did not 

control for, such as motivation and familiarity with textual descriptions and exercises may also 

have influenced the results. 
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Comparison by Question (AV Group) 
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Figure 4.7. Comparison of AV Group Pre-test and Post-test Responses 



93 

4.2.3. EXPERIMENT III: COMPARISON OF HALVIS AND LECTURE-BASED 

LEARNING 

This experiment was designed to compare HalVis with classroom lectures, and also to 

investigate how HalVis and lectures can together contribute to learning. We wanted to (1) verify 

our hypothesis that students learning from HalVis would outperform students learning by lecture 

alone, (2) measure additional learning obtained by combining lecture and HalVis, and (3) 

investigate whether the order (HalVis before lecture, or vice versa) would make a difference in 

performance. Participants in this experiment were novice computer science students, and the 

algorithms used were SelectionSort and MergeSort. 

Subjects 

The experiment involved 27 undergraduates enrolled in an introductory data structures 

and programming course at Auburn University. Subjects received extra credit for their 

participation. In the first week of the quarter, the subjects completed a demographic survey 

providing information such as GPA, ACT and SAT scores. We used this information and current 

class standing to rank and assign students to a matched pair of groups, a Lecture-Visualization 

(LV) group and a Visualization-Lecture (VL) group. The LV group received a class lecture 

discussing the algorithms, then interacted with the visualizations of the two algorithms in a 

computer laboratory. The VL group interacted first with HalVis, then attended the class lecture 

covering the algorithms. There were nine students in the LV group and eleven in the VL group 

that completed the three components of the experiment; seven students (six in the LV group and 

one in the VL group) did not complete all three components and their data is not included in the 

analysis below. The average mid-course grade for students in the LV group was 86% and the 

average for the VL group was 82% of the points possible at that time in the course. 
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Materials 

All participants attended a lecture on the two sorting algorithms provided in two 

consecutive 50-minute class sessions conducted by Dr. Dean Hendrix, a member of the Auburn 

University Computer Science and Engineering Department faculty. His lecture consisted of 

verbal instruction accompanied by blackboard diagrams, overhead transparencies, and a lecture 

summary handout. He responded to several questions from students in the class during the 

lecture. 

Both groups interacted with the same visualizations of both the SelectionSort and 

MergeSort algorithms, with no supplementary materials provided. 

A pre-test/mid-test/post-test combination measured individual learning performance with 

questions that probed conceptual and procedural knowledge about the algorithms. Students were 

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 

simulate algorithmic operations, and predict resulting data structure changes. 

Procedure 

The phases of this experiment were carefully synchronized with the class syllabus. The 

week before the scheduled lecture about sorting algorithms, students were given a pre-test to 

measure prior knowledge about the two algorithms and to obtain a baseline to measure 

subsequent changes. 

The day before the lecture, the VL group met in a computer laboratory on campus, 

interacted with HalVis to learn the two algorithms, and completed a mid-test. This test measured 

changes in knowledge resulting from HalVis interaction. The same lecture was attended by both 

of the groups. We chose to use a regular classroom lecture over a videotaped one to allow student 

interaction with the professor and to simulate a realistic learning environment. Having both 

groups attend the same lecture eliminated variations between separate lectures. 
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The day after the lecture, the LV group met in a computer laboratory on campus and first 

completed the same mid-test taken by the VL group. This test measured changes in knowledge 

resulting from the lecture for the LV group. Then the group was assigned to computer terminals 

and asked to interact with HalVis to learn the two algorithms. When they felt they understood 

the algorithms, they were asked to complete a post-test and allowed to leave. On this same day, 

the VL group met in a classroom and completed the same post-test. The post-test measured the 

final knowledge level of the two groups after both the lecture and the interactive sessions. 

We designed the experiment to minimize outside interactions that might affect the 

results. First, while we did not explicitly instruct students not to read the course textbook or try 

to learn more about the algorithms from other sources, only one of the algorithms was covered in 

the course textbook. A question in the mid- and post-tests asked the students whether they had 

read about the algorithms elsewhere. None of the students indicated on the mid-test that they had 

read about the algorithms, but four indicated on the post-test that they had. We did however ask 

students to refrain from discussing any aspect of the experiment during its course. 
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Results 

Examining the results depicted in Figure 4.8, we see that both groups were relatively 

unfamiliar with the algorithms based on their pre-test averages (7% for the VL group and 19% 

for the LV group). The mid-test results indicate the VL group learned more than the LV group: 
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following the session with HalVis, the VL group average score was 70% compared to 44% for 

the LV group after the lecture, representing an improvement of 63% for the VL group and just 

25% for the LV group. Hence, despite having less prior knowledge about the algorithms, in the 

mid-test, the VL group, after interacting with the algorithm visualizations, significantly 

outperformed the LV group that received a classroom lecture. The improvement in additional 

knowledge gained by the VL group from the subsequent lecture session was marginal (scores 

rose from 70% on the mid-test to 72% on the post-test), whereas the visualization helped the LV 

group catch up with the VL group by the time of the post-test, with their scores rising from 44% 

on the mid-test to 72% on the post-test. 

Another view of the results is depicted in Figure 4.9, showing the improvement in each 

group's performance as measured by test following the visualization and lecture treatments. 

Again, large increases in knowledge as measured by test performance occurred in both groups as 

a result of interacting with algorithm visualizations. The LV group experienced a 25% 

improvement in average score after receiving the lecture, then improved another 28% following 

the AV interaction. The VL group experienced a 63% improvement after the visualization, while 

the following lecture provided an improvement of only 2%. Another interesting observation is 

that both groups eventually reached similar levels (72%) of performance. The LV group showed 

steady increases following the lecture and then the visualization. The VL group showed a 

substantial increase resulting from visualization alone, to which the lecture session did not add 

considerably. 

These results appear to indicate that interactive hypermedia visualizations produce 

greater gains when prior knowledge is limited, and that a conventional lecture does not appear to 

provide significant additional learning benefits. On the other hand, students with prior 

knowledge gained by conventional instruction can also benefit from hypermedia visualizations. 
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Statistical support for these conclusions is provided in Tables 4.7,4.8 and 4.9. Table 4.7 shows 

the between-group statistical results. The post-test results show that the order in which lectures 

and visualizations are presented does not appear to make a difference, as both groups scored 

approximately the same (72% for the VL group and 72% for the LV group, (F(l,19)=0.001, 

p<0.97)). While these post-test results are not significantly in favor of either group, Table 4.8 

shows that the mid-test performance results are significantly in favor of the group that interacted 

with the visualization first (VL group) compared to the group (LV group) receiving the lecture 

(F(l,19)=11.87,p<0.033). 

Pre-test Mid-test Post-test 

LV 19% 44% 72% 

VL 7% 70% 72% 

F(1,19) 1.78 5.3 0.001 

P p< 0.198 p < 0.033 p < 0.97 

Table 4.7. Experiment III Statistical Summary: Between Groups (Overall Performance) 

Table 4.8 shows that the score improvement from the pre-test to the mid-test favored the 

group receiving the visualization, which for this first phase of the experiment was the VL group 

(F(l,19)=26.89, p<0.0001). Additionally, the score improvement from the mid-test to the post- 

test also favored the group receiving the visualization, which for this second phase of the 

experiment was the LV group (F(l,19)=l 1.87, p<0.003). These results suggest that the HalVis 

visualization leads to a significant improvement in learning. 
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Pre-to-Mid-Test 
Improvement 

Mid-to-Post-Test 
Improvement 

Overall Improvement 
(Pre-to-Post) 

LV 25% 28% 53% 

VL 63% 2% 65% 

F(1,19) 26.89 11.87 1.16 

P p < 0.00001 p < 0.003 p < 0.29 

Table 4.8. Experiment III Statistical Summary: Between Groups (Improvement) 

Specific test-to-test improvements for the two groups are shown in Table 4.9. Here, the 

only result that did not yield statistical significance was the improvement in performance for the 

VL group, when they went from having interacted with the visualization to receiving the lecture. 

The lecture added only 2% to the overall performance. But this effect is not statistically 

significant, indicating that the visualization prior to the lecture must have been the primary cause 

of overall improvement. In all other cases, both the lecture and the visualization resulted in 

significant improvements in knowledge. 

pre-to-mid mid-to-post pre-to-post 

LV F(1,19) 6.35 5.037 21.62 

P p < 0.023 p < 0.039 p < 0.0002 

VL F(1,19) 43.97 0.016 73.44 

P p < 0.00002 p < 0.899 p < 0.0000004 

Table 4.9. Experiment III Statistical Summary: Within Group (Improvement) 

These results are summarized as box plots in Figure 4.10. The box indicates the range of 

entries in the 25th through 75th quartile, and the lines extending to the left and right show the 

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the 
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thin line represents the median value for the group. The distribution of scores is interesting. The 

distribution in the LV group appears to be similar in each of the three tests, with quartiles that are 

approximately equidistant from a well-centered mean. The distributions are not as uniform 

across the tests in the VL group. The pre-test is tightly clustered and positively skewed. The 

mid-test following the visualization shows a wide distribution of scores, which then tightens up 

following the lecture to a more normal-appearing distribution. This seems to indicate that 

individuals may not have uniformly benefited from the visualization to the same extent, and that 

this dispersion was somewhat remedied by the lecture which presumably benefited those who did 

not significantly gain from the visualization. These individual differences are masked by the 2% 

overall improvement of the VL group from the lecture. This argues for hypermedia algorithm 

visualizations supplementing, rather than replacing, traditional instruction. 
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Figure 4.10. Experiment III Box Plots 
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Discussion 

This experiment shed interesting insights on the three hypotheses that we set out to 

investigate. First, the results support the hypothesis that learning by visualization is more 

effective than learning by lecture alone. The mid-test results captured the improvement caused 

by visualization in the VL group and lecture in the LV group. The results of this first phase were 

statistically significant (from table 4.7: F(l,19)=5.3, p<0.03). 

Second, these results suggest that the combination of learning by visualization and 

lecture leads to improvements over learning by visualization or lecture alone, as both groups' 

scores improved with each added phase/treatment. However, the improvement gains after groups 

received the second treatment were not uniform. The improvement observed by adding the 

visualization to the LV group was large (28%) and statistically significant (table 4.9: 

F(l,19)=5.037, p<0.039). However, the improvement observed in adding the lecture to the VL 

group was only 2% and not significant (from Table 4.9: F(l,19)=0.016, p<0.89). 

Third, as to the impact of the presentation order in the final outcome, these results 

suggest that order does not matter in terms of overall performance. After completing both 

phases, the two groups performed at about the same level (-72%, F(l,19)=0.001, p<0.97). 

However, as noted above, the greatest jump in performance of all the pairings was the 63% 

improvement observed in the VL group following the visualization. It should be noted that in 

this experiment, the lecture and the visualization were fairly redundant in their content, with both 

approaches giving similar basic information about the algorithm including general and detailed 

descriptions and examples of the algorithm in action. This insight would suggest that instructors 

that couple classroom lecture with hypermedia visualization can and should alter the depth and 

content of the lecture to be less redundant with the basic notions covered effectively by 
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visualization software. Preceding the lecture with a visualization lab should free the instructor 

from spending valuable lecture time covering the algorithm basics to allow delving into deeper 

material about the algorithm such as performance issues, design trade-offs, boundary cases and 

so on. 

Naturally, there are factors that could have influenced these results. The most obvious 

one is the quality of the lecturer. To address this issue, we requested the services of a highly 

rated (by students) professor who had taught introductory computer science courses several 

times. Dr. Dean Hendrix is known to be an excellent lecturer. We developed the experiment so 

that all the participants would attend a single lecture, to avoid the possibility that one lecture 

session could have covered the material in a different way than another. We also chose to have a 

live lecture instead of a videotaped one, to allow teacher-student interaction more typical of a 

classroom environment. 

One factor we did not control for was that some students might have read additional 

textual materials between the phases of the experiment. To reduce this possibility, we 

intentionally used the SelectionSort algorithm which was not mentioned in the course textbook. 

MergeSort was however covered in the textbook. We asked the students how much time they 

spent reading the text, if at all. Only four indicated that they had read the text, and the average 

time indicated was 10 minutes. We did not detect any significant differences in performance 

between the algorithm described in the textbook and the algorithm not covered in the textbook. 

4.2.4. EXPERIMENT IV: COMPARISON OF HALVIS AND LEARNING FROM 

TEXT & CONVENTIONAL ANIMATION 

This experiment was designed to compare our algorithm visualization framework to the 

environment typified by previous empirical studies which measured learning after participants 

viewed a textual description of an algorithm and then viewed an animation. The algorithm we 
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selected was Dijkstra's Shortest Path algorithm.   It is conceptually difficult, and is different in 

style (a graph algorithm) from all algorithms used in the previous four experiments (sorting 

algorithms).   Our hypothesis was that a properly designed hypermedia visualization would be a 

more effective tool for learning algorithms than a conventional algorithm animation combined 

with text. 

Subjects 

This experiment involved 38 undergraduate computer science students enrolled in a third 

year algorithm analysis course at Auburn University. Like previous experiments, participants 

were ranked based on their course performance up through mid-term grades, GPA, and 

ACT/SAT scores, and randomly assigned to create two matched groups: a "Tango" group and a 

"HalVis" group. Students were given extra credit for participating. Twenty students in the 

Tango group and eighteen students in the HalVis group completed the experiment. There were 

two students assigned to the HalVis group that did not complete the experiment and while their 

results are not included, their absence did not appear to bias the groups as will be seen in the 

section discussing the results. The average GPA and ACT scores for the HalVis group were 3.20 

and 27.4, respectively. The average GPA and ACT scores for the Tango group were 3.13 and 

28.1, respectively. 

Materials 

Tango Algorithm Animation: One of the most mature and widely available algorithm 

animation platforms is the Tango software suite developed by Dr. John Stasko (Stasko, 1990; 

Stasko, 1997), publicly available from Georgia Institute of Technology at 

ftp.cc.gatech.edu:/pub/people/stasko. The Tango software distribution executes on Windows95 

systems and includes a library of animated algorithms. Three researchers in our group carefully 

examined eight animations of the Shortest Path algorithm available in this distribution, and 
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selected one that appeared to be the most complete, easiest to understand, and which most 

closely matched the features of the HalVis system (i.e., use of multiple representations, 

contextual descriptions and animated pseudocode). 

Hypermedia Algorithm Visualization: A visualization for the Shortest Path algorithm 

was built and provided in HalVis. 

Handout: The Tango group received a supplement to help them learn the Shortest Path 

algorithm, which consisted of a five page extract from their textbook (Weiss, 1992). This was 

done to simulate the conditions under which Tango-style animations were previously 

experimentally evaluated (Lawrence et al., 1994), when the visualization groups received textual 

supplements in addition to the visualization. 

Test Questions: A pre-test/post-test combination measured individual learning 

performance with questions that probed conceptual and procedural knowledge about the 

algorithm. Students were tested on their ability to recognize and reorder pseudocode 

descriptions of algorithms, mentally simulate algorithmic operations, and predict resulting data 

structure changes. The pre-test measured prior knowledge about the algorithms and the post-test 

results measured changes resulting from the experimental conditions. 

Procedure 

As with the previous experiments, we timed the experiment to precede the course 

lectures that covered the subject of graph algorithms. Towards the end of the quarter, 

participants were asked to complete a pre-test that measured their prior knowledge about the 

Shortest Path algorithm. In addition to providing a baseline against which to compare 

subsequent changes, the pre-test results also helped us verify that the two groups were evenly 

balanced. 
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In the following week, both groups met in the same public computer laboratory on 

campus, but at different times. Both groups received a brief, navigation-only orientation to the 

software they were to use, then were assigned to a computer and instructed to interact with the 

visualization until they felt they understood the algorithm. The computers were Pentium-class 

systems with 15 inch color monitors. 

Members of the HalVis group were not given any text material to study, nor had they 

been exposed to the algorithm earlier in class. There was no time limit for either group, so when 

each subject indicated he/she was done, he/she was given a post-test to measure knowledge 

improvement. No student in the HalVis group took more than 90 minutes for the entire 

experiment. 

Members of the Tango group received an extract from their textbook describing the 

Shortest Path algorithm and were assigned to a computer to interact with the animation. They 

were not provided with any other information, nor had they been exposed to this algorithm 

during class lectures. When they indicated they understood the material, they were given a post- 

test and allowed to leave. No student in the text group took more than 60 minutes for the entire 

experiment. 

Results 

Examining the results shown in Table 4.10 below, we see that both groups were 

relatively unfamiliar with the algorithm based on the pre-test averages (23% for the Tango group 

and 22% for the HalVis group).   The post-test results show that the HalVis group's scores 

improved to 89% while the Tango group improved to 71% (F(l,37)=12.75, p<0.001). 

The results are also summarized as box plots in Figure 4.11. The box indicates the range 

of entries in the 25th through 75th quartile, and the lines extending to the left and right show the 

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the 
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thin line represents the median value for the group. The distribution of scores is interesting. 

Generally, the HalVis pre-test score distribution is tight and normal looking, but there are two 

outliers (shown as black dots) that scored very well, indicating prior knowledge of the Shortest 

Path algorithm. The distribution of the HalVis group's post-test scores indicates a tighter 

clustering, with one outlier at 69% (shown as a black dot), compared to the post-test score 

distribution of the Tango group. The post-test score distribution of the Tango group also shows 

(as a black dot) the presence of one outlier who scored extremely poorly. 

Statistical Summary 

Pre-test Post-test Improvement 
(raw) 

Tango 23% 71% 48% 

HalVis 22% 89% 68% 

F(l,37) 0.01 12.75 4.79 

P p<0.91 p<0.001 p<0.035 

Table 4.10. Experiment IV Statistical Summary 
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Figure 4.11. Experiment IV Box Plots 
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Discussion 

This experiment compared our HalVis algorithm visualization framework with an 

animation generated from a popular algorithm animation package. We chose Tango since Tango 

and its predecessors form a set of algorithm animations that have not only been extensively 

described in the literature (Stasko, 1990; Stasko, 1997) but also have been the subjects of 

significant experimental analyses reported in the literature (Byrne et al., 1996; Kehoe & Stasko, 

1996; Lawrence et al., 1994; Stasko, 1997; Stasko et al., 1993). The Tango animation was well- 

paced, showed good use of color to highlight algorithm actions, included a brief textual 

introduction, contained contextual explanations and provided the student with the algorithm's 

pseudocode, whose lines were highlighted synchronously as the animation proceeded. We 

supplemented this animation with pages describing the algorithm from the course textbook 

(Weiss, 1993) in order to provide the student with as much information about the algorithm as 

possible in a standalone setting, and to replicate as closely as possible the conditions of algorithm 

animation experiments reported by other researchers. The results indicate that our framework for 

hypermedia algorithm visualization design is more effective than an algorithm animation 

representative of current approaches. 

How did our Tango group compare to previous experiments reported in the literature that 

used Tango under similar circumstances? One experiment reported in (Lawrence et al., 1994) 

compared groups using the Tango animation system in conjunction with a lecture and active or 

passive laboratory assignments to learn Kruskal's Spanning Tree algorithm. In their study, one 

group's conditions closely matched that of our experiment: the group that received a prepared 

lecture (roughly corresponding with our group that received text) and a Tango/Polka animation 

that contained contextual descriptions but did not permit data modification (passive laboratory). 
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The comparison is shown in Table 4.11. While there are many factors that render an exact 

comparison impossible, such as the different algorithms used, the general results appear to 

suggest that our experimental group using Tango performed comparably with their corresponding 

experimental group. 

Comparison Summary 

Pre-test Post-test 

Lawrence et al, 1994 N/A 75% 

HalVis 22% 89% 

Tango 23% 71% 

Table 4.11. Comparison of Results with Lawrence et al. (1994) 

As with the other experiments, there are several factors potentially influencing the 

results. The high scores of the HalVis group in the post-test indicates a possible ceiling effect 

that might have suppressed a greater separation between the groups. Another factor could be the 

quality of the Tango animation. We attempted to address this by selecting the best and most 

comparable animation from the eight supplied with the Tango distribution files. We believe that 

we chose a representative animation. Nevertheless, it is possible that a different Tango 

animation might have led to different results for the Tango group. A similar argument could be 

made for the text (photocopied pages from the course textbook) that was provided to the Tango 

group. The textbook has been used for several years at Auburn, and it is considered to be a good 

choice for an algorithm analysis course. 
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4.3. GENERAL DISCUSSION 

4.3.1. COMPREHENSION 

Our experiments were designed to test the effectiveness of a novel framework for 

hypermedia algorithm visualizations, a framework that embeds animations in a context and 

knowledge providing hypermedia environment, against traditional methods of instruction. 

Comparisons with learning from a textbook, learning by reading carefully constructed textual 

explanations and solving problems, learning from lectures, and learning by interacting with an 

algorithm animation representative of extant research on the topic, all indicated the significant 

advantages of the HalVis framework from a self-directed learning perspective. Results from four 

of the five experiments were statistically significant for different levels of students and different 

kinds of algorithms. The performance of students in Experiment II showed a positive but non- 

significant trend favoring visualizations, suggesting that a hypermedia visualization can be as 

effective as learning from a well-crafted mixed mode explanation (text + diagrams) combined 

with problem solving. 

4.3.2. SATISFACTION 

In addition to measuring quantitative performance, we captured a log of user activity and 

gathered subjective evaluations from participants to gain insight from their perception of the 

system and the visualization experience. We found some of the comments and suggestions 

useful in helping to shape and modify the appearance and navigational structure of the system. 

Preliminary analysis of the user logs showed that students executed the detailed-level animations 

an average of three times and viewed the populated-level animation an average of four times. 

This was an interesting finding, since we anticipated the students would run the detailed-level 

animations more than this, and the populated animation less.  We found that over half of the 



110 

students experimented with entering their own data for at least one execution of the algorithm at 

the detailed level, and every student elected to make performance predictions during at least one 

execution at the populated level. 

Students overwhelmingly (87%) enjoyed interacting with the visualization and 92% 

indicated they would prefer learning by visualization if given the choice in the future. Extracts 

of some of the positive comments include: "Animation made it easier to understand ... more 

interesting ... much better than reading a book ...". Students liked ".. .being able to rerun the 

animation until you understand ... step by step...," as well as the questions and ability to make 

predictions. One student said, " I liked being able to see [efficiency]~I didn't realize there was 

that much difference." And another noted, "I liked the fact that the voice explains what is going 

on while the animation is going on."   There were some negative comments too. Students 

mentioned constructive things like: "It could use more sound," and "The reoccurring text was 

annoying." Interestingly, there were conflicting comments like one who said, "It was too 

detailed," contrasted to another that observed, "It was too simplistic." 

These results parallel virtually every study we have read. Detailed figures are available 

in Appendix C for those interested in gleaning more from these subjective comments. 

4.3.3. RETENTION 

Another measure of success for educational systems is increased information retention 

over time. Many researchers speculate that hypermedia systems and animations are information- 

rich, engaging, and contain a wealth of content that may enhance long term retention. Research 

has shown that people remember minute details contained in pictures much more accurately than 

information described in text (Mayer, 1989), but very little research has been reported about the 

long term effects on retention of viewing an animation. Our belief is that several facets of the 
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HalVis framework can enhance long term retention, particularly the use of animation in the 

Detailed View and the use of a real-world analogy in the Conceptual View to introduce the 

algorithm. Yet we recognize the many mitigating factors that make quantitative empirical 

research difficult. There are many confounding variables that intervene in the time between 

subjects viewing an animation and being tested weeks, months or years later to measure long- 

term retention. Nonetheless, we desired to gather some retention data to explore this area. 

One year after Experiments I through IV, we found twelve subjects that had been 

involved in learning the MergeSort algorithm who volunteered to participate in a retention 

study. Six had learned the MergeSort algorithm as a member of a Text-only group, and six had 

learned the algorithm using HalVis. They took a brief retention test involving questions very 

similar to ones they had seen on pre- and post-tests a year earlier to measure their recall of this 

algorithm. The subjects from the visualization group did 66% and the subjects from the Text 

group averaged 60% on the retention post-test. The results were not statistically significant, but 

the experiment was not intended to produce such formal results because of the many intervening 

and confounding factors that made what were once matched groups now unpredictably different. 

We could not control nor account for experiences they might have had over the year between the 

post-test for the initial experiment and the retention post-test that could have reinforced or 

obfuscated the concepts they had learned a year earlier. However, the results do reflect a slightly 

positive trend favoring the animation condition, and constitute one of the first quantifiable, albeit 

informal, retention studies in algorithm visualization research. Perhaps a more significant 

indicator of retention is the fact that five of the six visualization students, when asked what they 

remembered most about the system, specifically recalled the analogy. 
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4.3.4. SPEED 

Another measure of success that researchers attribute to hypermedia systems is that they 

have the potential to help students learn the same information (or more) in less time. Our 

experience has been just the opposite. We did not place restrictions on the amount of time 

students could spend in any facet of the experiments described in this section, unlike previous 

researchers who limited the amount of time subjects could spend interacting with the learning 

media involved in their research. We did not keep strict measures on the amount of time by 

individual, but we did keep anecdotal figures as groups completed the experiments. We 

observed that the Text groups of Experiment I took less time (~20 minutes) than the AV groups 

(-35 minutes); in Experiment II the Text group took a bit longer (-30 minutes) because of the 

exercises. The lecture in Experiment in took about the same amount of time as the AV session 

(-60 minutes).  While this data could be taken as a strike against hypermedia, we suggest a 

different interpretation: subjects found the hypermedia presentation more engaging and 

motivating, and either didn't notice the time passing or found the added time rewarding enough 

to continue anyway. We informally asked several students how much time they used the HalVis 

software, and in every case, their recall was at least 15 minutes less than the time they actually 

spent using the system.   Hence, students spent more time interacting with the visualizations, but 

didn't notice. Most instructors would declare any teaching approach a success that motivates 

students to spend additional time with a subject because they want to, not because they need to. 
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4.4. CRITICISMS 

The results reported in this chapter are among the first to provide statistical support of the 

use of animations to enhance learning algorithms. This is encouraging and exciting, but should 

be kept in perspective. In this section, we cast a critical eye to our work and present some of the 

issues that must be considered to keep our results in proper context, and to help guide future 

research. 

• Design bias: The same group designed the HalVis system, the learning objectives, the pre- 

and post-tests and performed the grading. While we attempted to be fair and unbiased at all 

stages of research, we recognize that using independent proctors, graders and designers could 

have helped address this criticism. 

• Inauthentic setting: The setting for conducting the experiments was not 'authentic,' which 

means our results might not be replicated if HalVis was used to supplement or replace typical 

courseware. Even though these experiments were conducted in classrooms and labs in the 

Computer Science department, all the subjects involved in our experiments understood they 

were participating in research. The sequence of grouping the students, issuing demographic 

surveys, pre-tests, post-tests and satisfaction surveys is not consistent with typical 

courseware. It is likely that many subjects allowed extra tolerance, patience and effort that 

might not be the case in day-to-day use. Of course, the opposite is also possible, which is that 

the students understood that only their participation and not their results was being 

considered for grading and credit, and performed only the minimum necessary to get by. At 

any rate, the research setting did not represent the envisioned used of algorithm visualization 

as a teaching tool, and the results reported here might not be replicated in authentic use. 
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• Group Size: Generally, as group sizes increase in statistical research, the effects of variation 

are decreased and a more representative population average can be reported. Our work 

involved groups with as few as nine and as many as twenty subjects, which are smaller than 

ideal for making statistical comparisons. Having more subjects would have added to the 

confidence and reliability of the results. 

• Limited Algorithmic Domain: Our experiments involved a limited number of algorithms that 

covered selectected sorting, merging and graphing problems. In these limited and relatively 

simple domains, the HalVis framework demonstrated encouraging results. However, it is fair 

to ask if our results would be replicated for other, possibly more complicated algorithms. 

4.5. SUMMARY OF EMPIRICAL COMPARISONS 

The following summarizes conclusions from the five experiments discussed in this chapter: 

• Advanced as well as novice students perform better in answering conceptual and 

procedural questions about certain fundamental algorithms after interacting with the 

HalVis hypermedia algorithm visualization framework than after studying explanations 

found in typical textbooks on algorithms. 

• The HalVis hypermedia algorithm visualizations appear to be as effective a learning aid 

for novice students to learn about selected algorithms as learning from carefully crafted 

textual and diagrammatic explanations combined with solving a set of problems. 

• Novice students gain more knowledge after interacting with the HalVis hypermedia 

algorithm visualization framework than after hearing a typical classroom lecture. 

Furthermore, lecture and visualizations supplementing each other provide the best 

learning scenario, and the order of presentation does not seem to influence the overall 

extent of learning. 
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• It appears that interactive hypermedia algorithm visualizations are more effective when 

prior knowledge is limited. However, students with prior knowledge from conventional 

instruction also derive a significant learning benefit from algorithm visualizations. 

• Individual differences in learning from algorithm visualizations exist. These differences 

may be compensated by the use of multiple modes of instruction. This argues for 

hypermedia algorithm visualizations supplementing, rather than replacing, traditional 

instructional methods. 

• Finally, the framework for algorithm visualization design that HalVis exemplifies 

appears to be a more effective teaching tool than previous algorithm animation designs. 

The general conclusion is that interactive hypermedia algorithm visualizations modeled 

after the HalVis framework (a system in which animations are embedded within a knowledge and 

context providing hypermedia environment) can provide significant benefits to learners as an 

educational medium for self-directed and self-paced learning, either by itself or even more so in 

combination with other instructional media. 

There are a number of possible reasons for this. First, in comparison with previous 

animation systems that only presented animations with some textual feedback, HalVis allows the 

student to learn incrementally by starting from a real world analogy and transitioning to the 

algorithm itself. Second, the hypermedia structure allows a student access to fundamental 

building blocks of algorithmic knowledge in-context and on-demand. Third, a learning 

objective-based design approach and the hypermedia structure surrounding animations have 

allowed us to divide dynamic information into manageable and meaningful pieces, and present 

each piece using animation chunks. This makes it easier for students to pause and reflect, repeat, 

or access other relevant information through hyperlinks while watching animations. Furthermore, 
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animation chunks are presented in synchrony with other representations in other media. These 

novel features, we believe, result in the dynamic information being conveyed better in context, 

and therefore in a more comprehensible fashion. Fourth, rather than providing just one view of 

an animation as has been the typical approach, HalVis presents three kinds of animations 

(analogical, micro-level and macro-level), so that the macro behavior is seen after the micro 

behavior is seen and understood, both following an analogical introduction to the algorithm. 

Fifth, our framework allows students to actively engage themselves in the visualization by 

changing data inputs, making performance predictions, and reflecting on questions that pop up in 

context, all contributing to better learning. 

The following chapters discuss a series of ablation experiments designed to measure the 

differential contributions to learning of these various features and subsequent refinements to the 

HalVis framework. 



5.        ABLATION STUDIES (WHAT MADE A DIFFERENCE?) 

The previous chapter focused on comparing a richly endowed hypermedia system with 

other learning media to validate the hypothesis that animation-embedded software could lead to 

the effective learning results that eluded former researchers. This chapter describes a series of 

experiments that were conducted to focus on the specific components that lead to the successful 

results we observed in Experiments I through IV. Three experiments were devised to probe 

specific aspects of the HalVis framework by comparing a control group using a fully-enabled 

version with test groups that had one or more features or views disabled. In Experiment V, we 

wanted insight on the impact of removing features such as chunking, questioning, and the 

animated pseudocode. Experiment VI tested the removal of a single view and Experiment VII 

explored the impact of removing two views. Table 5.1 indicates the features and views that were 

removed from each group. 

117 
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5.1. EXPERIMENT V: ABLATION OF FEATURES 

This experiment was designed to isolate selected features from our algorithr 

visualization framework to measure their respective impact and effectiveness. Of the unique 

features incorporated in our framework, the three we identified as the most likely to have an 

impact were chunking, animated pseudocode in the Detailed View, and use of questions. We 
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believed that the contextual explanations and the user's ability to interact with the input data for 

the animation were also important, but these features have already been empirically identified as 

significant (by Lawrence, 1993) so we did not pursue testing them. Our hypothesis was that each 

of these features, when removed from the overall framework, would lead to less effective 

learning performance by students compared to a control group receiving the full HalVis 

framework. 

Subjects 

This experiment involved 40 undergraduate computer science students enrolled in a third 

year algorithm analysis course at Auburn University. Like the experiments described in the 

previous section, participants were ranked based on their course performance up through mid- 

term grades, GPA, and ACT/SAT scores, and creating matched groups by taking the top four 

subjects from the ranked list and randomly assigning them to one of the four following groups: 

• Control Group: This group would interact with a fully enabled version of HalVis. 

• No-Chunking Group: This group would interact with a version of HalVis for which the 

chunking capability was removed. 

• No-Pseudocode Group: This group would interact with a version of HalVis for which the 

pseudocode pane on the Detailed View was removed. 

• No-Questions Group: This group would interact with a version of HalVis for which all 

questions were removed. 

Students were given extra credit for participating. The group demographics are shown in 

Table 5.2. 
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Group Name Number of 

Subjects 

ACT 

Average 

GPA 

Average 

Full (control) Group 10 26 3.3 

No-Chunking 10 28 3.1 

No-Pseudocode 10 28 3.2 

No-Questions 10 28 3.1 

Table 5.2. Experiment V Demographic Summary 

Materials 

Each of the groups interacted with the HalVis framework to learn the Quicksort 

algorithm. Selected features of the HalVis system were disabled or removed to facilitate each of 

the experimental groups.   The Control group received a version of HalVis with all features 

enabled. The No-Chunking group interacted with a version of HalVis for which the chunking 

feature was disabled in the Detailed View. This meant the animation would proceed to 

completion without any pauses. The user could control the speed of the animation, however. 

The No-Animated Pseudocode Group interacted with a version of HalVis in which the 

pseudocode window was removed in the Detailed View.   The No-Questions Group interacted 

with a version of HalVis in which all forms of tickler and feedback questions were disabled. 

None of the groups received any additional handout information, just the version of HalVis 

associated with their experimental group. 

A pre-test/post-test combination measured individual learning performance with 

questions that probed conceptual and procedural knowledge about the algorithm. Students were 

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 
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simulate algorithmic operations, and predict resulting data structure changes. The pre-test 

measured prior knowledge about the algorithms and the post-test results measured changes 

resulting from the experimental conditions. 

Procedure 

As with the previous experiments, we timed the experiment to precede the course 

lectures that covered the subject of sorting algorithms. Towards the end of the quarter, 

participants were asked to complete a pre-test that measured their prior knowledge about the 

Quicksort algorithm. In addition to providing a baseline against which to compare subsequent 

changes, the pre-test results also helped us verify that the four groups were evenly balanced. 

In the following week, the groups met in the same public computer laboratory on 

campus, but at different times. Each group received a brief, navigation-only orientation to the 

version of HalVis they were to use, then were assigned to a computer and instructed to interact 

with the visualization until they felt they understood the algorithm. The computers were 

Pentium-class systems with 15 inch color monitors. There was no time limit for any group, so 

when each subject indicated he/she was done, he/she was given a post-test to measure knowledge 

improvement. No student took more than 60 minutes for the entire experiment. 

Results 

The average group improvement is shown in Figure 5.1, and summarized in more 

detailed box plots in Figure 5.2. As we anticipated, the group that showed the greatest 

improvement was the group that interacted with the full version of HalVis, improving 55%. The 

group that improved the least was the group that interacted with the version of HalVis for which 

the Chunking capability was removed; their scores did improve, but only 35% which was the 

poorest of the four groups. The group that did not have any questions, predictions or ticklers 

improved 44%, and the group that lacked the window showing the highlighted pseudocode in the 
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Detailed View improved a surprising 51%. None of these results were statistically significant as 

shown in Table 5.3. However, there is a positive trend indicating the value of each of the ablated 

features. 

Improvement by Group 
(Features Removed) 

No Chunking 135% 

|44% No Questions 

No Pseudocode 151% 

- 

Full ■ 55% 

0%      10%     20%     30%     40%     50%     60%     70%     80%     90%    100% 

Score 

Figure 5.1. Improvement by Group for Experiment V (Features Removed) 
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Figure 5.2. Experiment V Box Plots 

Statistical Summary 

Group Average 
Improvement 

Variance 

Full 55% 13.8% 
NoChunking 35% 5.7% 
NoPseudocode 51% 5.0% 
NoQuestions 44% 11.0% 

F(3,37) 0.88 
P p < 0.46 

Table 5.3. Statistical Summary for Experiment V (Features Removed) 
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Discussion 

An interesting trend emerges from the navigational and usage data analysis. From the 

navigational logs captured by the HalVis software, we noted that the No-Pseudocode group not 

only spent the most time with the system (Figure 5.3), they also navigated back and forth 

between the Description screen that contained the pseudocode and the Detailed View that 

presented the visualization with a frequency three times that of the other groups. Several 

members in the group commented on how inconvenient such a design 'oversight' made using the 

software. It is also interesting to note that the No-Questions group spent an average of four 

minutes less interacting with the system, suggesting that the presence of questions throughout the 

system increases the interaction which is a positive outcome that might account for a portion of 

the improved performance observed in the control group. Finally, the No-Chunking group spent 

the least amount of time using the system (26 minutes) and produced the lowest improvement 

scores on the performance tests (35%). Yet, this group ran the animations about 40% more than 

their counterparts in the other groups. Even though they used the system more, without 

chunking, they got less out of the system for their efforts. Furthermore, we did not register any 

complaints or comments from this group that would indicate a sense of giving up out of 

frustration—these subjects felt they knew the material as well as their counterparts when in fact 

they did not. 
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Figure 5.3. Time/Performance Comparison for Experiment V (Features Removed) 

Figure 5.4 shows the number of times subjects in each group invoked the animation 

sequence in the Detailed View and the Populated View. The most notable trend is that the No- 

Chunking group ran the animations more than all the other groups. Without chunking, the 

Detailed View animations would generally run to completion in less time because the semantic 

pauses would not slow the execution. In the groups with Chunking enabled, we observed 

subjects taking advantage of the pauses to examine, probe and correlate the information in the 

various panes on the screen. Without the system-inserted pauses, the subjects apparently did not 

feel they were learning the subtle nuances of the algorithm and attempted to make up for this 

deficit by rerunning the animation multiple times. 
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Figure 5.4. Animation Execution Summary for Experiment V 

The lack of statistical significance between the improvement levels of the groups was a 

minor disappointment. We feel that the small group sizes contributed to this outcome. This 

outcome could also be an indicator that each of the features that were ablated, in a small and 

measurable way, contributes to better performance but that good performance is not exclusively 

dependant on any single feature by itself. In other words, a well designed hypermedia 

framework allows users to circumvent minor shortcomings by drawing from other related 

information in the system. We noted this in the No-Chunking group where they ran the 

animations more times to make up for the lack of pauses, and in the No-Pseudocode group as 

they navigated back and forth to the screen that possessed the information they felt they needed 

to understand the algorithm and meet the learning objectives. 
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5.2. EXPERIMENT VI: ONE VIEW REMOVED 

This experiment was designed to elide one of the three views (the Conceptual View, the 

Detailed View, and the Populated View), leaving the subject with the other two as a means of 

measuring the contribution each view makes to learning effectiveness.   Our hypothesis was that 

the most important view was the Detailed View and that it would prove to be the most valuable 

because of the amount of information and interaction it provided. Therefore, the groups that 

interacted with this view would outperform the group that was denied this view. We believed 

that the Populated View would follow in significance and felt that the Conceptual View would 

lag well behind the other two. 

Subjects 

This experiment involved 32 undergraduate computer science students enrolled in a third year 

algorithm analysis course at Auburn University. Students were given extra credit for 

participating. Like the experiments described in the previous section, participants were ranked 

based on GPA and ACT/SAT scores, and randomly assigned to the following matched groups as 

indicated below and summarized in Table 5.4: 

• Full (control) Group: This group was referred to as the CDP group, which stands for the 

views they would have access to in the HalVis framework (C=Conceptual View; 

D=Detailed View; P=Populated View). This group would interact with a fully-enabled 

version of HalVis. 

• No-Conceptual-View Group: This group was referred to as the DP group. This group 

would receive a version of HalVis in which the Conceptual View was disabled. The key 

views this group used were the Detailed and Populated Views. 
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• No-Detailed-View Group: This group was referred to as the CP group. This group 

would interact with a version of HalVis in which the Detailed View was disabled. The 

key views this group used were the Conceptual and Populated Views. 

• No-Populated-View Group: This group was referred to as the CD group. This group 

would receive a version of HalVis in which the Populated View was disabled. The key 

views this group used were the Conceptual and Detailed Views. 

Group Name Number of 

Subjects 

ACT 

Average 

GPA 

Average 

Full (control) Group: "CDP" 7 28.4 2.8 

No-Conceptual-View: "DP" 8 28.6 2.9 

No-Detailed-View: "CP" 9 28.9 2.8 

No-Populated-View: "CD" 8 26.3 3.1 

Table 5.4. Experiment VI Demographic Summary 

Materials 

Each of the groups interacted with the HalVis system to learn the Quicksort algorithm. 

We constructed a different version of the HalVis system, with the selected view removed, for 

each of the experimental groups.   The CDP group received a version of HalVis with all features 

enabled. The DP group interacted with a version of HalVis for which the Conceptual View was 

removed.   The CP Group interacted with a version of HalVis in which the Detailed View was 

removed.   The DP Group interacted with a version of HalVis in which the Populated View was 

removed. None of the groups received any additional handout information, just the version of 

HalVis associated with their experimental group. 
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A pre-test/post-test combination measured individual learning performance with 

questions that probed conceptual and procedural knowledge about the algorithm. Students were 

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 

simulate algorithmic operations, and predict resulting data structure changes. The pre-test 

measured prior knowledge about the algorithms and the post-test results measured changes 

resulting from the experimental conditions. 

Groups were exposed to versions of HalVis as indicated in Table 5.5. 

CDP Group 
(Control) 

CD Group DP Group CP Group 

Conceptual View Y Y - Y 

Detailed View Y Y Y - 

Populated View Y - Y Y 

Description Screen Y Y Y Y 

Questions Module Y Y Y Y 

Table 5.5. Views Available to Groups for Experiment VI (1-View Removed) 

Procedures 

As with the previous experiments, we scheduled the experiment to precede the course 

lectures that covered the subject of sort algorithms. Towards the end of the quarter, participants 

were asked to complete a pre-test that measured their prior knowledge about the Quicksort 

algorithm. In addition to providing a baseline against which to compare subsequent changes, the 

pre-test results also helped us verify that the groups were evenly balanced. 

In the following week, the groups met in the same public computer laboratory on 

campus, but at different times. Each group received a brief, navigation-only orientation to the 
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version of HalVis they were to use, then were assigned to a computer and instructed to interact 

with the visualization until they felt they understood the algorithm. The computers were 

Pentium-class systems with 15 inch color monitors. We imposed no time limits on any group, so 

when each subject indicated he/she was done, he/she was given a post-test to measure knowledge 

improvement. No student took more than 60 minutes for the entire experiment. 

Results 

Figure 5.5 shows the average group improvement, and Figure 5.6 summarized the results 

as box plots showing the average (the dark vertical bar), the 25-75% quartile range (the box), and 

the range of values (the lines extending from the quartile box). As expected, the group that 

received all three HalVis views performed the best. However, examining the results reveals an 

interesting observation—the impact of the Conceptual View. We expected that the final order of 

the groups would be CDP, DP, CD, then CP, simply because the Detailed View portrays so much 

of the inner workings of the algorithm, and the Populated View shows the macro behavior.   Our 

results did not confirm this hypothesis. Instead, contrary to our expectations, the groups that 

performed best were not the ones exposed to the Detailed View but rather the groups that 

interacted with the Conceptual View. The improvement for the groups that received the 

Conceptual View with any other view combination more than tripled the improvement of the DP 

group. 
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Figure 5.5. Improvement by Group for Experiment VI (1-View Removed) 
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Figure 5.6. Experiment VI Box Plots 
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Figure 5.7 shows the amount of time subjects interacted with the HalVis software and 

confirms our expectation that subjects provided with the Detailed View would spend more time 

with the system, but the differences are not large. 
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Figure 5.7. Time/Performance Comparison for Experiment VI (1-View Removed) 

Figure 5.8 shows the average responses for each of the questions by group. Interestingly, 

there are four questions in which the CD group outperformed the CDP group. These questions 

dealt with aggregate performance concepts such as impact of the pivot selection and order of the 

data on overall results. In none of the questions did the DP group excel. Hence, the differences 

between the CD and CP group shed some insight into the different ways in which the Detailed 

View and the Populated View assist learners. 
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Figure 5.8. Experiment VI Comparison of Question Responses 

Table 5.6 shows a partial statistical summary of the experiment, presenting data for 

comparisons between groups that were significant or noteworthy. The data was statistically 

significant for groups that received the Conceptual View in any combination, compared against 

the DP group that did not. On the other hand, statistical significance was not detected in the 

comparison between the control group and the CP group, although there is a slightly positive 

trend favoring the control group. 

Statistical Summary 

Statistically Significant Pairings Nonsignificant 

CDP 55% CP 45% CD 47% CDP 55% 

DP 21% DP 21% DP 21% CP 45% 

F(1,14) 16.71 F(1,16) 8.99 F(1,15) 7.16 F(1,15) 1.45 

P p < 0.001 P p < 0.01 P p< 0.018 P p < 0.25 

Table 5.6. Statistical Summary for Experiment VI (1 View Removed) 
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Discussion 

Perhaps the most noteworthy observation from the results of this 2-view ablation study 

was the effect of the Conceptual View in priming the learning of information presented in 

subsequent views. The groups that interacted with the Conceptual View in any combination with 

other views performed better than the group that lacked the Conceptual View. Comparing the 

difference between the number of times the animations were executed (Figure 5.9), it appears 

that having the Conceptual View motivated the CDP group to invoke the Detailed View 

animations nearly twice as many times, and the Populated View animation nearly three times 

more than the DP group.   The impact of the Conceptual View was examined further in the next 

study that singled each view out. 

Usage Summary 
(1-View Removed) 

UDVAnimations 

I PVAnimations 

-Total 

Figure 5.9. Animation Execution Summary for Experiment VI (1-View Removed) 
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5.3. EXPERIMENT VII: TWO VIEWS REMOVED 

This experiment was designed to isolate each of the three views of our algorithm 

visualization framework to measure their respective impact and effectiveness.   Our hypothesis 

was that each view was important to the framework but that the Detailed View would prove to be 

the single most valuable because of the amount of information and interaction it provided. We 

were uncertain how measurable the impact of the other views by themselves would be, since 

neither the Populated View not the Conceptual View contained the volume or depth of 

information available in the Detailed View. 

Subjects 

This experiment involved 27 undergraduate computer science students enrolled in a third 

year algorithm analysis course at Auburn University. Students were given extra credit for 

participating. Like the experiments described in the previous section, participants were ranked 

based on GPA and ACT/SAT scores, and randomly assigned to the following matched groups: 

• Full (control) Group: This group received a fully-enabled version of HalVis and are 

referred to here as the CDP group (C = Conceptual View, D = Detailed View, P = 

Populated View). 

• Conceptual-View-Only Group: This group interacted with a version of HalVis in which 

both the Detailed and Populated Views were disabled. We refer to them in this section 

as the CV (Conceptual View) group 

• Detailed-View-Only Group: This group used a version of HalVis in which the 

Conceptual View and the Populated View were inaccessible. They are called the DV 

group. 
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•    Populated-View-Only Group: This group used a version of HalVis with the Conceptual 

and Detailed Views removed. They are referred to here as the PV group 

Table 5.7 shows the demographics of the groups involved in Experiment VII. 

Group Name Number of 

Subjects 

ACT 

Average 

GPA 

Average 

Full (control) Group: "CDP" 6 28.5 2.8 

No-Conceptual-View: "C" 7 27.6 2.8 

No-Detailed-View: "D" 7 27.8 2.7 

No-Populated-View: "P" 7 25.3 3.0 

Table 5.7. Experiment VII Demographic Summary 

Materials 

Each of the groups interacted with the HalVis framework to learn Dijkstra's Shortest 

Path algorithm. Four versions of the HalVis system were created. The core information was the 

same in each version. The difference was in the number of screens that users were allowed to 

see, as indicated in Table 5.8. In effect, we ablated away two views and only provided subjects 

with a single view and limited supporting information. All groups were allowed to interact with 

the Fundamentals module and the description screen that contained a brief description of the 

algorithm and presented its basic pseudocode. All groups received the feedback questions. 

Otherwise, the views were disabled as indicated below. 
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CDP Group 
(Control) 

CV Group DV Group PV Group 

Conceptual View Y Y - - 

Detailed View Y - Y - 

Populated View Y - - Y 

Description Screen Y Y Y Y 

Questions Module Y Y Y Y 

Table 5.8. Views accessible to groups for Experiment VII (2-Views Removed) 

A pre-test/post-test combination measured individual learning performance with 

questions that probed conceptual and procedural knowledge about the algorithm. Students were 

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally 

simulate algorithmic operations, and predict resulting data structure changes. The pre-test 

measured prior knowledge about the algorithms and the post-test measured changes resulting 

from the experimental conditions. 

Procedure 

As with the previous experiments, we timed the experiment to precede the course 

lectures that covered the subject of graph algorithms. Participants were asked to complete a pre- 

test that measured their prior knowledge about the Shortest Path algorithm. In addition to 

providing a baseline against which to compare subsequent changes, the pre-test results also 

helped verify that the four groups were balanced. 

In the following week, the groups met in the same public computer laboratory on 

campus, but at different times. Each group received a brief, navigation-only orientation to the 

version of HalVis they were to use, then were assigned to a computer and instructed to interact 

with the visualization until they felt they understood the algorithm. The computers were 
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Pentium-class systems with 15 inch color monitors. There was no time limit imposed on any 

group, so when each subject indicated he/she was done, he/she was given a post-test to measure 

knowledge improvement. No student took more than 60 minutes for the entire experiment. 

Results 

Figure 5.10 shows the average improvements observed in each of the groups. As 

expected, the CDP group outperformed the others, followed closely by the DV group. 

Interestingly, the CV group outperformed the PV group by 21%. Equally interesting is how well 

the CV group did with the limited amount of information that they received. 

Performance Comparison 
(2-Views Removed) 

S 

|87% 

Conceptual View Only B57% 

Detailed View Only (77% 

Populated View Only 136% 

AllViews 

T 1  1 1  

0%       10%      20%      30%      40%      50%      60%      70%      80%      90%     100% 

Score 

Figure 5.10. Improvement by Group for Experiment VII (2-Views Removed) 
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The box plots in Figure 5.11 provide deeper details into each group's performance, indicating the 

average (the dark vertical bar), the 25-75% quartile range (the box) and the total range of values 

(the lines extending from the quartile boxes). The CDP group shows the tightest and most 

normal-looking plot, mimicked closely by the DV group plot. The box plots for the CV and PV 

groups indicate a much wider range of post-test values. 

Experiment VII Comparison 

PreTest-CV 

9% 

PreTestDV 
ED— 

4% 

PreTest-PV 

19% 

PreTest-CDP 

2% 

25 

PostTest-CV 

65% 

PostTest-DV 

80% 

PostTest-PV 

55% 

PostTest-CDP 

89% 

50 75 100% 

Figure 5.11. Experiment VII Box Plots 
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Time/Performance Comparison 
(2-Views Removed) 

--90% 

--80% 

70%    g 

--60%    w 

100% 

CDP Gp DVOnly CVOnly 

Group 

PVOnly 

Figure 5.12. Time/Performance Comparison for Experiment VII (2-Views Removed) 

Figure 5.12 shows the relationship between performance, number of PV and/or DV 

animations executed, and the amount of time users spent with the various version of the software. 

We were not surprised with the amount of time the different groups used to interact with HalVis. 

The most interaction occurs in the Detailed View, and the time figures for the CDP and DV 

groups reflect this design attribute. The group spending the least amount of time was the CV 

group, which did not surprise us, yet we find it interesting that they spent more time than we 

expected they would, given the limited amount of information and interaction provided in the 

Conceptual View. While it appears there is a loose correlation between group performance, 

amount of time spent using the system and the number of animations that the group executed on 

the average for the CDP, DV and CV groups, this trend is not present in the PV group. Despite 

running the animations nearly the same number of times as the CDP group and 50% more times 
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than the DV group, the PV group achieved the lowest performance improvement. Based on 

animation executions alone, one could raise the question of the effectiveness of DV animations 

over PV animations. Also striking is the level of improvement of the CV group that viewed no 

animations, just interacted with an real-world analogy and simulation. 
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Figure 5.13 shows a detailed breakout of the amount of time subjects spent in each of the 

informational screens and views of the HalVis framework. As anticipated, the CV group spent 

the least amount of time and the CDP group spent the greatest amount of time interacting with 

the system. Furthermore, these data support the findings in the previous experiment that users 

tend to compensate for information that is omitted by spending time in related screens, as seen in 

the higher times for the DV group in the Detailed View, and the PV group in the Populated 

View. 
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Time Allocation Comparison 
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□ ConceptualView 5:55 0:00 8:00 0:00 

I Description 3:58 2:44 4:53 5:08 

D DetailedView 14:50 22:57 0:00 0:00 

B PopulatedView 6:14 0:00 0:00 11:50 

H Questions 5:32 8:38 5:27 7:02 

Figure 5.13. Experiment VII Detailed Time Data for Each Screen 
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Figure 5.14 shows how the groups performed on each of the questions. It is interesting 

that the PV group performed much lower than the other groups except on the question that delves 

into assigning weights to edges (Q7) to force a particular Shortest Path sequence. 

Question Comparison 
(2-Views Removed) 
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Figure 5.14. Experiment VII Comparison of Question Responses 

Table 5.9 summarizes the various statistical comparisons between the control group and 

groups with individual views (upper portion of the table), and between groups with individual 

views. Except for the CDP/D comparison, the results are all significant. 

Statistical Summary 

CDP 0.87 CDP 0.87 CDP 0.87 
C 0.57 D 0.77 P 0.36 
F(1.11) 14.51 R1.11) 2.55 F(1,11) 51.82 
P p<0.003 P p<0.14 P p<0.00001 

C 0.57 D 0.77 C 0.57 
D 0.77 P 0.36 P 0.36 
F0.12) 5.82 F(1,12) 28.29 F(1.12) 5.35 
P p<0.033 P p<0.0002 P p<0.039 

rable5.9. Statist cal Summary for Experiment VII (2 -Views Removed 
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Discussion 

This experiment indicates how much impact each of the views have on learning 

effectiveness. The importance of the Detailed View was confirmed, as was the value of the 

Conceptual View. We were somewhat surprised at the level of improvement observed in the 

group that only interacted with the Conceptual View, and this suggests that having a good 

analogy can produce surprisingly positive results. The performance of the Populated View group 

lagged behind the others. Yet in each of the experiments, the animations on this view were 

executed about the same number of times. Perhaps this serves as confirmation that some 

animations are merely 'candy for the eyes' in that they are entertaining to observe but seem to 

obscure the details, depth and mechanisms needed to engage the learner's mind. It should also 

be noted that the animation in the Populated View closely resembles algorithm animations 

created in previous research. 

5.4. SUMMARY OF ABLATION EXPERIMENTS 

This series of experiments was conducted to explore the components of the framework 

developed in this research that led to the significant results in learning effectiveness observed in 

Chapter 4. The first experiment removed features that were unique to our design and which we 

believed contributed to learning effectiveness. While the performance differences between the 

groups in this study were not statistically significant, there was a noticeable effect when each 

feature was removed. The absence of a feature did not lead to a linear decrease in performance. 

The effect manifested itself as decreased performance on the post-test and also as altered user 

behavior. Users appeared to be able to glean the information they needed by exploiting other 

sources in the system. For example, one group made up for the lack of chunking by rerunning 
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the animation over and over, and the group that lacked collocated pseudocode on the Detailed 

View flipped back and forth between a screen that did show the pseudocode. 

The second experiment explored the effect of removing a single view from the trio that form 

the core of the framework. Our initial expectations were not validated. We were surprised to 

find how much better the groups that interacted with the Conceptual View performed despite the 

greater amount of information portrayed in the Detailed and Populated Views. Probing this issue 

further involved the final experiment that provided a single view to the groups and measured 

their performance. Here, the value of the Detailed View was confirmed, but so was the 

impressive contribution of the Conceptual View. Interestingly, the students generally 

commented most favorably about the animations in the Populated View even though their 

performance was poorest in both sets of experiments. They thought they were learning more 

from the Populated View than was actually the case. 

These results lead to several observations: 

• The Conceptual View is important. While we initially believed that the analogy/real- 

world example was a minor educational addition and feature of our framework, it 

appears to have a pronounced effect in peaking student interest and priming them for 

learning from subsequent views of greater detail. We were not able to test our belief that 

using analogies might also contribute to long term retention. 

• The Detailed View is important, but needs to be presented in context for the student to 

get the greatest potential from it. Providing the student with appropriate information 

makes the visualization more effective. Removing the pseudocode was not only an 

inconvenience, it led to poorer performance. The importance of user-provided data sets 

as inputs to the algorithms is not as clear, since very few users took advantage of this 

feature. Fully interactive algorithm animations may not be as necessary as originally 
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thought, and perhaps canned data sets are sufficient to illustrate representative algorithm 

behaviors to students. 

• Questions are useful but not critical for effectiveness. Even though the subjects that 

were denied access to tickler questions in the Detailed View, predictions in the 

Populated View and the feedback-style queries in the Questions Screen did not perform 

significantly worse than subjects who received questions, we did note a decrease in their 

test scores and believe they are important to an educational system like HalVis. 

• Chunking is important in helping students pace their learning and absorbing the 

subtleties of the algorithm. Even the best work-arounds that students attempted could 

not make up for the absence of this feature. 

• The Populated View is less useful than originally thought. It is one of the most 

entertaining to watch, but appears to yield the least amount of understanding. 

Of the components mentioned in Chapter 3, these experiments tested and provide valuable 

insight to the surprising potential of Bridging Analogies, Multiple Views, Semantic Chunking, 

and Purposeful Interaction, using a novel framework built using Multimodal Presentation 

techniques and the algorithm lessons were based on sound learning objectives. The next chapter 

investigates ways of disseminating the tools we have developed and empirically tested. 



6.        EXTENDING THE FRAMEWORK TO THE INTERNET 

This section describes our efforts to make these results and products available for others 

to use for testing and research. First we describe how to access and execute the HalVis system 

which was used for the experiments reported in Chapters 4 and 5. Then we discuss the 

limitations of the current HalVis environment and describe our efforts to replicate the framework 

discussed in Chapter 3 using another algorithm animation system that addresses some of the 

HalVis shortcomings. 

6.1. ACCESSING THE HALVIS PROTOTYPE 

The HalVis prototype system is available for public downloading at 

http://www.eng.auburn.edu/department/cse/research/vi3rg. The self-extracting program creates a 

HalVis directory on the target system's hard drive and installs the runtime execution files needed 

to execute. This consists of the HalVis program and a group of runtime executable files. The 

system was developed using Asymetrix Toolbook, for which the runtime executable files are 

available royalty-free to the general public. HalVis works with the following versions of 

Microsoft Windows: 3.0, 3.1, 95, 98, and NT. Users will find the system fully functional and 

programmed with the six algorithms described in Appendix B. Unfortunately, extending the 

HalVis program to incorporate additional algorithm visualizations is not easily accomplished. 

147 
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6.2. HAL VIS LIMITATIONS 

HalVis was designed as a dedicated system (see discussion in Chapter 2.2.4) similar to 

AACE, XSortLab and AlgoNet. The design philosophy behind HalVis was to use rapid 

prototyping techniques to create, test and validate the novel features of the framework described 

in Chapter 3. As a dedicated system, HalVis is not easily user-modifiable. Programming is 

required of researchers or instructors wanting to alter existing HalVis visualizations or to create 

new ones. This means having access to a licensed version of Asymmetrix Toolbook, and 

expertise in the Toolbook authoring language (called OpenScript). We offer and provide the 

already-coded visualizations and templates as examples to help. But, admittedly, this is a 

daunting task to a skilled programmer, and nearly unthinkable for the student wishing to create 

visualizations of his own. 

Another limitation to the HalVis approach is it is only available for Microsoft Windows 

environment. While this is a very popular and prevalent operating environment, it does not 

support widespread, platform-independent execution. For these reasons, we investigated 

techniques to implement the HalVis framework using other tools. 

6.3. TOWARDS A GENERAL AUTHORING ENVIRONMENT 

We envision the HalVis framework being implemented in a way that supports Internet 

access and execution, and written in a way that allows students to interact with already-prepared 

visualizations as well as supporting a more constructive approach of helping students create their 

own visualizations. To make the components of the framework available to a wider range of 

users desiring a broader delivery platform such as the Internet, a tool other than Asymmetrix 

Toolbook must be used. The rich properties of HTML and Java make porting some of the 

features of our framework possible. One shortcoming of the HalVis prototype was that it did not 



149 

support user-developed animations without considerable knowledge and expertise in the 

Toolbook language. Fortunately, there are several systems available that support user-developed 

animations, built on the scripted 'interesting event' paradigm.  XTango is the most popular 

interesting event animation tool, currently available for stand-alone execution in the Unix and 

Windows environments. The interesting event paradigm allows end users to create and modify 

animation scripts in addition to replaying and interacting with ones already prepared by others. 

Unfortunately, XTango is not available for Internet execution. 

An attractive alternative tool is available. Researchers at Duke University (Pierson & 

Rodger, 1998) have created a system called JAWAA that implements the XTango command set 

using Java, which allows Internet delivery of animations. JAWAA supports the interesting event 

paradigm and allows user-created animation scripts. Like XTango, JAWAA commands facilitate 

creation, placement and manipulation of a wide variety of graphical objects like circles, lines, 

squares, and points. Furthermore, they have extended the XTango command set to facilitate 

animation of complex data structures, like trees, arrays, stacks and more, making it one of the 

best general purpose animation systems available. A description of the JAWAA command 

syntax is provided at the Internet address indicated above and, for the reader's convenience, at 

Appendix D. However, despite its superiority and wealth of desirable features, the JAWAA 

engine does not support some of the capabilities that were tested and found to be effective in the 

HalVis framework. Fortunately, the JAWAA system can be extended and wrapped in HTML 

script to provide most of the features we have described as being most significant. 

We have named the modified software JA VIZ (Java-based Algorithm Visualization) tool. 

The key extensions we implemented are: 
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• Contextual text messages- JAVIZ provides authors the capability to post 

explanatory messages to the viewing screen to help users understand and interpret 

the actions occurring on the screen. 

• Pseudocode window collocated with the animation- JAVIZ allocates a pane for the 

author to place pseudocode in any level of detail for the user to observe while the 

animation is executing. 

• Pseuducode highlighting- JAVIZ provides the author with the ability to highlight 

specific lines in the pseudocode window, which helps the user identify at what step 

the animation might be during the course of its execution. 

• Chunking support- JAVIZ provides a mechanism for authors to let the system and 

the user cooperatively control the semantic pauses in the execution of an animation 

script to allow time to think, interpret and absorb the information as it unfolds. 
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Figure 6.1. The JAVIZ Screen Depicting the BubbleSort Algorithm 

Figure 6.1 shows a screen capture of the JAVIZ depiction of the BubbleSort algorithm, showing 

the pseudocode window to the right, the animation pane to the left, and buttons to control the pace 

of the animation above the contextual text window located at the bottom of the screen. Note the 

similarity to the Detailed View of the HalVis framework (see Chapter 3.2.4). 

6.4. JAVIZ LANGUAGE SYNTAX 

This section describes the syntax of the scripting language commands. In most cases, the 

JAVIZ syntax is the same as in the JAWAA system, which these commands extend, and the 

XTANGO system, from which JAWAA evolved. Figure 2.15 shows a file of JAWAA scripted 

commands, and Appendix D contains a copy of the JAWAA command syntax that is also available 

at the Duke University Internet site. 
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The PostMessage command in Table 6.1 is used to place explanatory text in the 

contextual text window. The animation author would use this command to provide the student 

with a brief, one-line summary of that action being taken by the algorithm. 

Command: PostMessage 

Parameter: string 

Example: PostMessage  This is a contextual explanation 

Table 6.1. The PostMessage Command 

The pair of commands in Table 6.2 provide the mechanism to post a delimited sequence of lines, 

generally pseudocode, into the text panel on the right hand side of the JA VIZ window. Note that 

the text lines must be enclosed in quotation marks. If the text is wider or longer than the panel 

provided, scroll bars will appear to allow the user to manipulate the text window. The example 

sequence shown in Table 6.2 would post the three lines representing a simple FOR loop in the 

JA VIZ pseudocode window. 

Begin Command: PostPseudocode 

Parameter(s): Line 1 

Line 2 ... 

Line n 

End Command: EndPostPseudocode 

Example: PostPseudocode 

"forx = 1 to 10" 

"   y = y*x" 

"endfor" 

EndPostPseudocode 

Table 6.2. The PostPseudocode Command Sequence 
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The command in Table 6.3 allows the animation author to highlight selected lines in the 

pseudocode panel as a means of attracting attention to and indicating the line of the algorithm 

currently being 'executed' in the animation. If a line number is given that exceeds the number of 

lines in the pseudocode window, the last line is highlighted. If another line has been highlighted 

as a result of a previous instance of this command, the other line is de-highlighted in favor of the 

new line being selected. The example below results in the second line in the pseudocode 

window being highlighted. 

Command: HighlightLine 

Parameter: Line number (an integer) 

Example: HighlightLine  2 

Table 6.3. The HighlightLine Command 

The command in Table 6.4 implements the chunking capability demonstrated in the HalVis 

framework. The animation author places these LogicalPause commands in the animation script 

to mark semantic chunks or logical pausing locations. The integer value provided as a parameter 

to the command indicates the pause level. The default value is 0, which is no logical pausing, 

meaning the animation proceeds to completion unless the user specifically intervenes by pressing 

the Pause or Stop buttons on the control panel. If the user presses the StepLevel button, the 

chunking level is changed to 1, 2 or 3, depending on how many times the button is pressed. 

Now, when the script encounters a LogicalPause, if the scripted pause level is less than the user 

selected threshhold, the animation pauses. Otherwise, the animation proceeds as though the 

LogicalPause was not in the script. This implements the chunking control feature that allows the 

author to mark logical sequence boundaries in an algorithm but gives the user control to skip 
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across or pause at the boundaries. In the example below, if the user had selected StepLevel = 2, 

the LogicalPause command indicated below would cause the animation to pause until the user 

signaled he was ready to proceed by pressing the UnPause button. On the other hand, if the user 

had selected StepLevel = 1, the LogicalPause command indicated below would be ignored, and 

the animation would continue as though the command wasn't there. 

Command: LogicalPause 

Parameter: Pause level (an integer) 

Example: LogicalPause  2 

Table 6.4. The LogicalPause Command 

6.5. RUNNING A JA VIZ VISUALIZATION 

This section describes the steps involved in creating and executing a JA VIZ animation. One of 

the strengths of this system is the ability to run animations from a remote site or locally-created 

script files. The JA VIZ code is available at http://www.eng.auburn.edu/departments/cse/vi3rg 

along with a limited number of animations to demonstrate the system capabilities. Users wishing 

to author their own animation script must create an HTML file, similar to the one shown below, 

that causes the JA VIZ program to seek the animation script file from the user's local Internet 

resource, identified using the animLoc parameter. 

<APPLET CODEBASE="http://www.eng.aubum.edu/department/research/vi3rg/JAVIZ" 
CODE="AnimClass.class" 
WIDTH=750 
HEIGHT=450 
ALIGN=CENTER> 

<PARAM NAME=animLoc 
VALUE=''http://wvvw.eng.aubum.edu/department/research/vi3rg/JAVIZ/BubSort.anim''> 

<PARAM NAME=animName 
 VALUE="Animation"></Applet>  

Table 6.5. Sample HTML to Execute a Local Animation Script 

The script file (an example is at Figure 2.15) containing the animation commands should be 

saved in ASCII format in a directory available on the Internet as a Web resource. The name of 
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the file must match the name given in the ParamName animLoc entry of the HTML file as shown 

above. When the HTML file is accessed using a Web browser, the JA VIZ code will execute the 

script referenced and the animation will proceed as authored. 

We will continue to enhance and improve the JA VIZ program as an ongoing research 

project. 



7.        CONCLUSION 

This research has produced the first consistently significant results involving algorithm 

animation as a learning device. We have shown that subjects not only enjoy the hypermedia 

presentation of information, they learn more effectively interacting with algorithm-embedded 

hypermedia visualizations than from textbooks, lectures and animation-only approaches. 

Admittedly, our results are based on a small set of algorithms tested with smaller-than-ideal 

groups of subjects using a specially developed HalVis visualization system. Nevertheless, the 

results across a group of seven separate experiments give encouraging support to the potential 

benefits of using animation in algorithm education. Our results provide a general framework that 

others can adapt to individual circumstances as needed. 

7.1. RESEARCH CONTRIBUTIONS 

Our contributions fall into three general areas. 

Theoretical: Drawing from prior research and blending some innovative ideas of our 

own, we have developed a framework for embedding animations into a knowledge-providing 

hypermedia structure for teaching abstract and dynamic concepts. The framework is built on a 

hierarchy of modules laced with embedded animations and hypermedia links that introduce 

topics with broad analogies, guide the user to learn detailed information and reinforce the 

learning objectives with multiple views. The framework underscores the importance of keeping 

the user engaged with a variety of interaction techniques, chunking, questioning, and 

encouraging self-explanation. 
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Empirical: We have conducted a series of experiments that validated our theoretical 

framework with statistically significant results. We also provide experiments to gain insight to 

the specific impact of various features and views of our framework. This work stands as the 

most comprehensive set of empirical experiments involving the use of animation to help students 

learn about algorithms that is available in current literature. 

Software: We have created the HalVis system and programmed six algorithm tutorials. 

We have demonstrated that the more significant features of our framework can be ported to other 

algorithm animation environments by extending the capabilities of an existing Internet-based 

authoring program to create the JA VIZ system. Both HalVis and JA VIZ are available for public 

use. 

7.2. FUTURE DIRECTIONS 

In the course of most research projects, additional questions and topics are encountered, and 

our experience has been no different. Future research could be conducted in the following areas: 

• Study the impact of the conceptual view, specifically characteristics of analogies. What 

about the analogies primed learning? How important are fidelity and interactivity to the 

analogy? How much can students learn from analogy alone? What about algorithms for 

which analogies don't readily exist? 

• Study the effect of user/student-designed animations compared to expert-prepared ones using 

the framework discussed here. Will students learn more effectively if they take a more 

constructive approach and build their own animation depicting the algorithm's operations? 

• Differentiate the effects of hypermedia visualization with different classes of subjects, such 

as different genders, different learning style, and so on. 
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• Conduct deeper research into other measures of success like long-term retention, speed and 

satisfaction. Our work just scratched the surface using these metrics. Does interacting with 

hypermedia aid long term retention? How useful is the analogy to helping users recall 

algorithmic details over the long term? Do hypermedia visualizations motivate students 

differently than using other teaching techniques? What would the effect be of establishing 

time limits on the comparative studies we conducted in Chapter 4? 

• Explore the effects of color and sound on learning. Our work employed both, but on the 

intuitive notion that sound and color help highlight important concepts and events. What 

kind of audio is most effective to supplement and reinforce hypermedia modules? How can 

visual techniques such as color changes or flashing objects be used to attract attention to 

important items? 

• Compile a list of guidelines to help authors create better algorithm animations. How big 

should chunks be? What is the best way to use questions such as the ticklers, predictions and 

feedback-style questions we employed? 

• Conduct eye-tracking studies to explore where subjects look during a multi-pane animation. 

What patterns develop? Are some panes used more than others, or not at all? How could a 

designer place multiple panes for optimal use? 

• Continue enhancing the authoring process. A major enhancement and convenience left for 

future development is the creation of an interactive scripting environment that would allow 

authors to visually place objects, generate the script and allow running the script from the 

same facility. Currently, one must create the script commands using a separate process, then 

run the JA VIZ engine to view the sequence. This approach works and is adopted by all other 

animation systems, but is not as convenient as an interactive environment could be. 
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•    Conduct experiments to evaluate the HalVis framework in other settings. Does the HalVis 

framework accommodate harder and more complex algorithms? Can all algorithms be taught 

with visualization or are there ones that are inherently non-visual? Our experiments 

compared media against each other, and we hypothesize that combining visualization with 

textual, lecturing and other teaching techniques should enhance learning even more than any 

of these methods by themselves, but would that be the case? 

Rather than abandoning the notion of employing algorithm animation as a learning aide, we have 

shown that there are contexts in which animation can be quite effective, and have raised many 

ideas and questions for future researchers to explore as a means of gathering deeper insight and 

understanding into how computers and hypermedia can help humans visualize and learn abstract 

concepts. 
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APPENDIX A: THE HALVIS VISUALIZATIONS 

The sections that follow show all the screens of the Hal Vis prototype. Where 

possible, the screen captures were taken during execution rather than at the beginning or 

the end, to help the reader envision how the objects on the screen appeared to the user. 

The screens are ordered by algorithm and according to the natural navigational path the 

user was encouraged to pursue. The user was provided a flexible navigational interface 

that defaulted to the sequence of screens depicted in these pages, or allowed the user to 

deviate and navigate directly to desired topics. Most screens included a short audio 

welcoming and orientation track. The Detailed View and Populated View screens 

included audio event signals and end-of-execution prompts to encourage the user to try 

various other options available for enhancing the animation. 
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B.l    FUNDAMENTAL MODULE SCREENS 

Objective   Recognize some of the different methods of depicting or expressing the steps involved in an algorithm 

Topic 

Back 
Ways to Represent Algorithms 

Representing an Algorithm 
An algorithm is simply a sequence of 

operations or actions that solve a 
problem. There are several ways to 

depict the actions that vary in complexity 
and structure. For example, a recipie is 
one way of representing the algorithm to 

make good chocolate chip cookies. 

In computer science, we typically see 
flowcharts and pseudocode to elaborate 

on the actions of the algorithm. 
Flowcharts are graphically informative 

but harder to create and modify; 
pseudocode is popular because it is 

quite flexible, easy to write, and closely 
mimics most programming languages. 

Pseudocode 
Notation 

initialize a to 1 
input b 
if b > 0 

b = a + 5 
else 

b = b*(-1) 
endif 

output b 

Figure A.1.1. Fundamentals Module Screen- Representation 

Objective  jcornprehend the mechanisms used in algorithms to depict a sequence of actions to be performed 

Topics 

Back 
The Sequence Operation 

Sequence 
Performing a sequence of 

operations is simply following 
a list of instructions in the 
order they are listed. A 

sequence of steps is shown 
here in the graphically- 

oriented Flowchart Notation 
and again in the more 

textually-oriented 
Pseudocode Notation. 

Pseudocode Notation 

set a to 1 
b = a + 5 
output a 
output b 

Flowchart 
Notation 

Program Example 
(in Pascal) 

* 
a:=1: 
b:= a + 5; 
wcitelnf'a-'.a); 
wrHelnfb=".b); 

set a to 1 

|   b=a+S   | 

* 
output a 

i 
output b 

Figure A.1.2. Fundamentals Module Screen- Sequence 
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Objective   Comprehend the mechanisms used in algorithms to choose or select different sequences of actions 

Tgpjcs 

Hack 
The Selection Operation 

Selection 
The Selection construct is 

used when a choice needs to 
be made that will dictate a 
sequence of actions if the 
answer is true and another 
sequence of actions if the 
answer is false. Selection 
steps are depicted slightly 

differently 
in Flowchart Notation and 
in Pseudocode Notation. 

Pseudocode Notation 

ifa>b 
output "a is bigger" 

else 
output "b is bigger" 
endif 

b = a"b 

Program Example 
[In Pascal! 

ifa>b 
writelnf'a is bigger") 

else 
writelrO is bigger"); 

b:=a-b; 

true      / is 
a>b? 

\     false 

" " 
output "a is bigger" output "b Is bigger" 

b = a*b 

Figure A.1.3. Fundamentals Module Screen- Selection 

Objective   [Comprehend the mechanisms used in algorithms to repeat sequences of actions...known as looping or iteration 

The Looping Operation 

A loop is a sequence of operations or tasks 
that we want to repeat one or more times, and 

are frequently used in programming. There 
are different ways to control how many times a 

loop is performed, like a fixed loop that 
performs actions a set number of times, a 

counting loop that performs an action a 
variable number of times, and conditional loop 
that repeats until some event happens.  Note 
that conditional loops might never terminate if 

the expected ending condition never 
occurs...and endless loops are NOT GOOD. 

Loops can also be nested, so that one (or 
more) loops appear inside the body of another. 

Loops consist of a body, controlling variable 
and boundaries. The body is the sequence of 
actions to be accomplished. The controlling 

variable is used to determine when the 
terminating condition is met and must function 
within the upper and lower boundaries or the 

loop will not function correctly. 

A Nested Loop 

ilag = false 
while flag is not true 

actions 
repeat N times 

nested actions 
end of loop 

set flag as appropriate 
end of loop 

inner 
loop 

outer 
loop 

Choose One from this column         and One from this column 

O Simple Loops 

# Nested Loop 

O Endless Loop 

® fe ejrfpo»dkB_Npto8onj 

O Flowchart Notation 

O Program Example 

Figure A.1.4. Fundamentals Module Screen- Iteration 
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Objective   Comprehend what recursion is and how it is used in algorithms to solve problems 

Topics 

Back 
The Recursive Operation 

A recursive operation is one that calls 
itself as a step in solving itself. This 
apparent circularity is often confusing: 
to solve the problem, first solve the 
problem. However, recursion works 
because: 

(1) each call to itself involves a smaller 
instance of the original 

(2) Ultimately, the problem must 
reduce to a simple base case, which 
can be solved easily without further 
recursion, and starts 'unwinding' the 
previous calls with the solution. 

Recursion is an elegant way of 
expressing some algorithms, but it 
should be noted that virtually every 
recursive algorithm can be rewritten 
as a non-recursive routine. 

Pseudocode Notation 
Recursive Approach 

Pseudocode Notation 
NonRecursh/e Approach 

factorial(N) factorial(N) 

ifN = 1 
return 1 

else 
output N'factorial(H 1) 
endif 

Total = N 
while N>1 

N = N-1 
Total = Total" N 
end while 

output Total 

Show Me Recursion jSliow Me iteration! 

Figure A.1.5. Fundamentals Module Screen- Recursion 

Objective   Recognize different classes of algorithms and relative efficiency of data sets of various sizes 

Topics 

Back 
About Algorithm Efficiency 

Algorithm efficiency is categorized by the number of major steps needed to 
handle a single input, equating a major step to a "uniT of time. Badly designed 
algorithms will take more steps than needed (and hence more time) and be 
arguably less efficient than a well-designed routine that takes fewer steps. 
Efficiency is important because most programs deal with hundreds or even 
thousands of input values, and the additional time that an inefficient algorithm 
would take can become significant. 

For example, if it takes a sequence of 5 statements to solve a single input 
value, this would take 1 unit of time. To solve 10 inputs would require 5 * 1 units of 
time...and N Inputs would take N * 1 units of time. This is called "linear" because 
each added input value simply increases the time to complete the problem by one 
unit of time. A linear algorithm is very efficient. 

If we had a nested loop of a linear sequence that took 1 time unit, but looped as 
many times as there were inputs, it would take 2*2 units of time to solve for 2 
inputs, and 3 * 3 for 3 inputs, and N * N for N inputs. These are known as N- 
squared algorithms, since each additional input increases the time to solve the 
problem by a factor of N. 

There are no linear sort algorithms... most are in the N-squared category, which 
means that to sort a sequence of 10 numbers using an N-squared class 
algorithm takes 100 units of time. This seems a trivial amount of time, but 
consider an input sequence of 1000 values...it would lake 1000 units using a 
linear algorithm but 1000000 units using an N-squared routine. This difference is 
significant. 

A handful of the very clever sort algorithms fall into a class that lies between 
linear and N-squared, called the logarithmic class algorithms, which involve 
N* log N steps. 

And there are some very complex or inefficient algorithms that are worse than N- 
squared in efficiency, known as exponential algorithms which involve 2AN steps. 

N 
(amber of inpuls) 

Units of time 

50 674 

Progress meter... 

O Linear 

O Logrithmic fNLogN") 

# N-Squared 

O Exponential 

Figure A.1.6. Fundamentals Module Screen- Efficiency 
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Objective  {comprehend that information can he organized in different ways based on specific ordering criteria 

Sorted and Unsorted Data 

Sorted vs Unsorted 
A list is sorted if the elements are 

organized in a particular order, like in 
alphabetical order, numerical order. 
or the size of the shapes involved. 

Ascending vis Descending Order 
Ascending order means the elements 

are listed from smallest to largest. 
Descending order means the 

elements are organized from largest 
to smallest. 

Unsorted                         Sorted 
Ascending 

Order 
Descending 

Order 

H 
1 

1 
B 
0 
B 
13 
E3 

!•-'  "1 

K: ■ :| 

fr =■■■■■■! 

EE3 

m 
m 
a 

¥ ■■   1 
ED 
O 
1 
*■' ■■■-■] o 
B tv  \ 

Choose one: 

O Numerical Order 

O Alphabetical Order 

t§> Shape Size 

Figure A.1.7. Fundamentals Module Screen- Sorted Data 

Objective   [Comprehend how comparisons are done by programs, what inversions are. and how swapping corrects them 

Topics 

Back 
Comparing and Swapping Values 

A comparison operation 
involves a decision about 
some quantifiable aspect 

(value, size, weight, etc) of two 
items to determine whether 

one is larger or smaller, or that 
they are equal. If we are 
sorting a list of items into 
ascending order, we will 

compare pairs of values and 
exchange their positions if they 

are out of order. Each pair 
that is out of order is called an 

inversion, which the swap 
operation rectifies. 

Since the value in location 1 is out off 
order compared to the Hern in location 2, 

we need to swap them to correct the 
inversion. 

Continue j Cancel 

Figure A.1.8. Fundamentals Module Screen- Swapping 
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Objective   [This screen provides background about pi'JOt picking strategies «set! in Quicksort Algorithm 

SSBSI 
Back 

Picking Pivots 

The task of picking a pivot value to use in Quicksort is 
the subject of much research. A good pivot will evenly 
partition the list into balanced sublists, while a bad 
choice leads to an imbalanced tree. 

Three pivot picking strategies are shown here: 

Leftmost (simply taking the leftmost value in the list). 
While this is very simple to implement, if the input data 
is consistently ordered, this leads to a very bad 
partitioning 

Random (choosing a value at random from the list) 
This is slightly better than Leftmost, but can still lead to 
unlucky partitioning, and is unpredictable, at best. 

MedianOfl (involves examining the first, middle and last 
ralues In the list and using the middle of the three) 
This is more complicated to implement, but guarantees 
lhatthe pivot will never be the extreme value and will 
create a relatively even partitioning. 

Choose one from this fist and one from this Bst 

O Ascending Data O LeftMost Value 
O Random Value 

® Median Of 3 
# Random Data 

Figure A.1.9. Fundamentals Module Screen- Picking Pivots 

Objective  frlHs screen defines basic terminology associated with graphs 

TOPICS 

Back 
Graph Terminology 

Graphs are useful data structures. Some common 
graph terminology is discussed below 

Vertex or Node: a junction point 

Edge or Link: a relationship or link between two nodes 

Adjacent: the term used to indicate that two nodes 
are connected by a single edge 

Path: the sequence of one or more edges between 
two nodes 

Cycle: a path that leads back to a node. There is a 
cycle here (A-B-D-C-A) 

Acyclic: A graph without cycles 

Weighted graph: a graph whos edges are weighted 
by some quantifiable value. 

Branching Factor: A number that indicates how 
many edges flow from a given node. The branching 
factor here is approximately 3 (see nodes B and D) 

Figure A.1.10. Fundamentals Module Screen- Graph Terms 
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B.2    BUBBLE SORT 

Objective [This screen provides the basic idea of the Bubble Sort algorithm using a real-world example 

Mi Menu   > 
IJ ,: ;j 

Bubble sort gets its name from the 
world of physics, where bubbles in 

water rise to the surface. 
Generally, when a bubble is 

knocked loose and begins its 
ascent, it continues till it rises to 

the surface. Usually, a bubble will 
knock into and move around other 

bubbles on its way. 

In Bubble Sort, we let the smallest 
(or largest) item float to the top of 
the list, then repeat for the next 
smallest, then the next, until all 

items have bubbled up (or down) 
to their proper place. 

Animate Bubbles 

Figure A.2.1 Bubble Sort Algorithm Conceptual View Screen 

Provide information about the behavior of the Bubble Sort algorithm and introduce the pseudocode 

Description of Bubble Sort 

Bubble Sort is in iterative routine in that it uses nested loops to cycle 
or loop through elements in a list. The inner loop (controlled here by 
the variable labeled 'y) compares neighboring pairs of adjacent 
elements and swaps them if the first element is smallerthan the 
second element of the pair. The outer loop (controlled here by the 
variable labeled \) controls the number of passes needed to 
guarantee the elements end up in sorted order. For Bubble Sort 
pass is needed for each element in the list.  In each pass, sm "* 
elements are bubbled' upward and the smallest remaining vajde 
always ends up in the uppermost remaining position. 

Here, two versions of Bubble Sort are shown ..one version bubbles-""^ 
the smallest value to the top (or left side), while the other version 
accomplishes the same end result by 'pushing' bigger values down to 
the bottom, sort of an inverted Bubble Sort. This would be like 
shaking a bin of racks and having the bigger ones settle to the 
bottom of the container while the smaller pebbles jostle to the top. 

Bubble Sort is one of the easiest sorting algorithms to remember and 
implement, but it is terribly inefficient. It practically compares every 
element against every other element (specifically it makes N*(N-1)/2) 
comparisons), and EVERY TIME an inversion is detected, a swap is 
performed. The worse case would be an input list in descending 
order, which would incur a swap for every single comparison...very 
wastefull 

for x = N-1 downto 1 
for y = N downto N-x+1 

,...!AR.RMY:.11 iARRAYIyJ 
swap 

ndif 
endfor 

endfor 

for x = 1 to N-1 

..ÜO.üJÜi.'Ü \!i... 
..Jti^AY[y:JJi>_ARRAYly.Li 

swap 
endif 

endfor 
endfor 

Figure A.2.2. Bubble Sort Algorithm Description Screen 
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Objective  Comprehend the design, behavior and the specific mechanisms of the bubble sort algorithm 

Detailed Look at Bubble Sort Menu >! 
J 

Controls 

Temp 

n H H H H B H 

for y = N downto N-x+1 
if ARRAY[y-1]>ARRAY[y] 

Pass* 

!   1 

X Y Comparing 

# of Comparisons   # of Swaps 

1               1     6 

I     6 !     2 

äeginning pass # 1 
Comparing elements 7 and 6- -Swapping... 
Comparing elements 6 and 5- -Swapping... 
Comparing elements 5 and 4- -Swapping... 
Comparing elements 4 and 3- -Swapping... 
Comparing elements 3 and 2- -Swapping... 
Comparing elements 2 and 1 - -Swapping... 

Figure A.2.3. Bubble Sort Algorithm Detailed View Screen 

Objective observe how Bubble Sort works on larger sets of numbers 

Topics' 
Back 

Show me: 

BubbleSort ' 

Bubble Sort in Action 

• ttllflHElll 
10 

h 

Color Legend 
W~i done & in place 
■I pending 
pi comparingfewapping 

Select speed 
(or press LEFT mouse button daring 

afeozitlim execution to adjust) 

j Fastest 

# Medium 
j 
j Slowest 

Vour Actual 
Predictions: C alculations: 

Passes completed 50 13 

Compaiisons 2500 SAA 

Swaps: 1000 409 

Figure A.2.4. Bubble Sort Algorithm Populated View Screen 
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Objective  [fest yow knowledge about specific aspects of t!ie Bubble Sort algorithm 

:< Topics 

Back 
Questions about Bubble Sort 

J Questionl 

J Question? 

J Questions 

*f Question^ 

CoriecH 

What would the order be after the first pass of an ascending sort, 
given the initial list: 

12,3,1.9,5 

BtT 

»;1. 12. 3.5.9! 

012.1.3.9,5 

OlZ. 3. 9. 5.1 

23)1. 3.5. 9.12 

Figure A.2.5. Bubble Sort Algorithm Question Screen 
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B.3    SELECTION SORT 

Objective [This screen provides the basic idea of the Selection Sort algorithm using a real-world example 

< Menu > 

Select sort works Hke kids lining up at 
school when the bell rings. They assemble 
in random order. To put them in order, the 
the teacher scans (or 'passes') down the 
fine, selecting the shortest person to trade 
places with whoever is at the head of the 

Bne. 

J?l?PVf M? toLÖ£?LP®s?J 

Then the teacher scans the remaining 
students to find the next smallest person, 

trading them with the person in the second 
position. Then the third shortest is 

selected and moved into the third slot, and 
so on until everyone in the line is in order. 

#   
Show Me the Rest 

Figure A.3.1  Selection Sort Algorithm Conceptual View Screen 

Objective   provide information about the behayior of the Selection Sort algorithm and introduce the pseudocode 

1 Topics > 
Back 

Description of Selection Sort 

The Selection Sort algorithm is an iterative routine in that it uses nested 
loops to make several passes or loops through elements in a list. The 
inner loop (controlled here bythevarlable labeled V5 has the simple task 
of finding the smallest element in the list. To do this, it scans the 
unsorted elements to find the smallest one. It begins assuming and 
using the first value in the unsorted portion as the smallest remaining 
element, and checks it against each successive element in the list. 
Whenever it finds an element smallerthan the one previously discovered 
on that pass, the routine keeps track of the location ofthat value (using the 
rariable MIN), and continues the scan until the end of the list. At that point, 
MIN marks the smallest value, and can be swapped with the head of the 
unsorted list. 

Since the inner loop only makes one pass through the elements to find 
the smallest one left, an outer loop (controlled here by the variable labeled 
SO becomes necessary to perform this task once for each position in the 
list. Without this outer loop, only the first element would be sorted into 
position. Another pass is needed to find the next smallest value to put in 
position 2, and anotherto put the next smallest in position 3, and so on. 

In Selection Sort, each pass involves a number of comparisons, but only 
one swap operation. In the four element list shown, the first pass would 
require 3 comparisons but only one swap. The next pass would require 2 
comparisons and one swap. The third pass would require 1 comparison 
and one swap. Afourth pass would not be needed since the last element, 
by default, is the smallest remaining item. Hence, to place a list of 4 
elements in order, we need 6 (this is N(N-1)ft) comparisons and 3 (this 
is"N-1") swaps. Selection Sort is nolterriblv efficient but is rather easy to 
remember and implement. 

forx=1 toN-1 
MIN = x 
lory = ::•! tor 

ifa|y]<a|» 
MIN = y 
endif 

endfor 
swap aJMIN] and ajx] 
endfor 

Figure A.3.2. Selection Sort Algorithm Description Screen 
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Objective This screen presents the algorithm and demonstrates how it functions, focusing on the key design 

Menu 
iconSSS] IE»«]    Detailed Look at Selection Sort 

Temp 

m 4 
1               2 

as0 
3               4               5 

I   6 

6 7 

for y = x+1 to N 
if atyl < a[MIN] 

endfor 
swap a[MIN] and ajx] 
endfor 

■Beginning pass # 2 
■ Comparing Items 2 and 3—New Min (3) found 

I 
Comparing 

Pass*           X         I             MINSfemm 
I   2       !    2       I    3            fT"   IT" 

# of Comparisons   # of Swaps 

IT         I   1 

1                Press hereto continue Animation 

Figure A.3.3. Selection Sort Algorithm Detailed View Screen 

Objective bbsenie how Selection Sort works on larger sets of numbers 

Selection Sort in Action 

Show me: 

ISelcctSort 

Select speed 
(or piess LEFT moose Wtton daring 

algorithm execution to adjust) 

J Fastest 

♦' Medium 

j Slowest 

Color Legend 
EFl Done & in place 
■ Unsorted items 
M Item to swap (x) 
r~l Comparing (y) 
■ Minimum detected 

Figure A.3.4. Selection Sort Algorithm Populated View Screen 
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Objective  [fest your knowledge about specific aspects of the Selection Sort algorithm 

Questions about Selection Sort 

^Questionl 

^fQuestionZ 

J Questions 

_1 Question^ 

Congratulations! Your solution is correct 

ILZJIZZJI 

fforx=1 toN-1 
|MIN = X 
ffor y = x+1 to N 

I a|y] < a[MIN] 
1MIN = y 
lendif 
lendfor 

Figure A.3.5. Selection Sort Algorithm Question Screen 
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B.4   MERGE SORT 

Objective [This screen provides the basic idea of the MergeSort algorithm using a real-world example 

Menu Introduction to MergeSort 

MergeSort takes its name from 
the fact that it uses a merge 

procedure to create an 
ordered sequence.   In fact 

uses just two simple 
operations, one that splits a 
sequence into two parts and 

another that merges two 
sequences into a single, 

ordered one. 

Starting with a single dataset, 
MergeSort splits it into two 
halves, recursively sorts the 

halves, and merges the halves 
back into a single dataset 

Show Me The Split Operation 

Figure A.4.1  MergeSort Algorithm Conceptual View Screen 

Objective   Describe the essential behaviors of the P^ergeSort aigorithm and introduce high-level pseudocode 

; Topics 

Back 
Description of MergeSort 

MergeSort is a recursive algorithm that uses a DMde-and-Conquer 
approach to generate sorted sequences. The essential idea is to divide the 
nput list recursively into halves until one element remains, then make 

proc mergesort(Array) 
it .arras-- rf.nt.wi-. rrnip IMn 1 e-lPir.prtt 

^Middle = (length(Array)) / 2 
^LeftHalf = mergesort(Ärray[i ..Middief) 

order) into a 3rd list (also in order).                                                        f 

MergeSort has 4 simple operations:                                             ^r 

1. Split the input into halves (here it simply finds the midpoint) 
2. MergeSort the left hair 
3. MergeSort the right half 
4. Merge the two sorted halves into a single sorted list 

MergeSort calls itself with half-sized fists until it reaches the base case. 
The base case is when the input to MergeSort contains only 1 element and 
cannot be divided any further. By default, a list of one element is in order, J 
so what gets returned is an ordered sequence of 1 element to be mergei^r 
with another partial (but ordered) list.                                             ^r 

The algorithm for Merging two sequences into one is shown here and 
described in more detail bvfollowtna the Meraina link. 

Because MergeSort splits the input in half, this algorithm is very efficient, 
nvoMna "N ton N" steps. This is much less than the N squared complexity 
Bf Bubble and Selection Sort algorithms. So, for a list of 50 elements, 
MergeSort requires approximately 300 steps whereas Bubble sort would 
require 2500! 

RightHott - mergesort(Array[Middle+1 ..N]) 
ResultArray = merge(LettHatf .RightHalf) 
Return ResultArray 

else 
Return 

endif 
endproc 

Proc merge(LettHalf .RightHalf) 
("OOP                                     _ ,   _ _,_  

if leading item rn LeftHalf < leading item in RightHalf 
append leading item m LeftHalf to Result 

else 
append let        item in RightHalf to Result 

endif 
untB LeftHalf or RightHalf is empty 
while LeftHalf contains elements 

append remaining items from LeftHalf to Result 
endwhiie 
while RightHalf contains elements 

append remaining items from RightHalf 1o Result 
endwhiie 
return Result 

end 

Figure A.4.2. MergeSort Algorithm Description Screen 
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Objective    Comprehend the structure and function of the MergeSort Aigorrthm 

Execution Animation 

Detailed Look at MergeSort 

The Merge Sort Algorithm 

HE 
H H 

2    J] |T] 

Execution Variables 

proc mergesort(Array) 
if length(Array)>1 

Middle = (length(Array)) / 2 
J.eftArray = mergesort(Array[t Middle]) 

RightArray   = mergesort(ArrayJMiddle+1 ..N]J 
ResultArray = merge(Left Array, RightArray) 
return ResultArray 

Execution Status Messages 

Recursion Depth 

r * 
Total Calls 

Left   Middle     Right 

r^r r~ rr 
Comparing _t|_ ^Comparisons Calling MergeSort for elements 1 thru 2 «»Splitting at # 1 

Base case reached; Returning element 1 for merge 
Base case reached; Returning element 2 for merge 
Merging sublists 1 and 2 

Comparing 1 and 2 ...moving 2 
Pushing leftside element 1 

Calling MergeSort for elements 3 thru 4 «»Splitting at ff 3 
Base case reached; Returning element 3 for merge 
Base case reached; Returning element 4 for merge 

Press here to continue Animation 

Figure A.4.3. MergeSort Algorithm Detailed View Screen 

Objective pbserue and compare how the Mer geSort algorithm works on larger srjls of numbers 

Topjcsj 

Back 

Show me: 

iMergeSort j 

MergeSort in Action 

 Illlllll  ml ii .Mil 1 

Color Legend 

□ Recursive Call 
■ pending 

Select speed 
(or press LEFT mouse button Airing 

algorithm execution to adjust) 

J Fastest 
..) 
.) Medium 
• 
J Slowest 

Your Actual 
Predictions: Calculations: 

Recuisiue Calls: 15 44 

Comparisons: 100 130 

Maximum Depth 7 5 

Figure A.4.4. MergeSort Algorithm Populated View Screen 
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Elective   hes est your knowledge about specific aspects of the Merge Sort algorithm 

Topics1 

Back 
Questions about Merge Sort 

*f Questionl 

*f Question? 

<^Question3 

^TQuestionl 

How many times will MergeSort be called to sort the following input: 

Input Array: [6, 5. 4, 3, 2.1, 9, 7J 

015 (the original call, 2 calls w/4 items, 4 calls w/2 items, 8 calls w/1 item) 

O 7 (the original call, 2 cells w/4 items, 4 calls w/2 items) 

i>!3 {the qrjiqinal call. 2 calls w/4 items)! 

No.   Hint: remember that MergeSort splits the 
input a number of tiroes... 

OK. 

Figure A.4.5. MergeSort Algorithm Question Screen 
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B.5    MERGE ALGORITHM 

Objective [This screen provides the basic idea of the Merge algorithm using a real-world example 

Menu   > 

Merging things together is a common task. 
For example, automobile traffic merges from 

one highway into another. Companies merge, 
forming a single corporation where 2 once 

existed. 

In computers, we often must merge data 
from 2 streams into one, and usually we want 

the result to be ordered. 

Here, we are given 2 stacks of cards that need 
to be merged into a single, ordered deck. 
Basically, we compare the top item of each 

stack and move the smaller of the two into the 
first available position of the finished stack. 

We continue doing this until all the items have 
been moved. 

Show Me the Merge Operation 

^jQd^.cM^!fl?J^!!!!!l^i 

Introduction to Merging 

Lets begin 

This game pits you against the clock.  The object is to click 
on the card that the MERGE algorithm would choose in the 
least amount of time and with the fewest errors.  The timer 
begins when you click OK 

OK 

Figure A.5.1  Merge Algorithm Conceptual View Screen 

Understand the basic behavior of the Merge Algorithm and introduce the pseudocode for it. 

Description of Merging 

The Merge algorithm accepts 2 lists as input parameters. It Proc merge(LeftHalf .RightHalf) 
loop 

the smaller into the first available position in the ResultArray. 

Notice that ResultArray must be at least as large as the 
number of elements in both LeftHalf AND RightHalf or it will 
overflow. Also note that 3 pointers or indexes are needed to 
mark the current position of each of the three arrays being 
manipulated (LeftHalf, RightHalf. and Result}. 

It is possible that the two lists will perfectly interleave, and 
Merge will take one from one list and the next from the other 
list. However, this is generally not the case, and so the 
algorithm must handle the possibility that theLeftHalf or 
RightHalf will be depleted before the other. This is handled 
using a condition to exit the upper loop, and another loop to 
flush the remaining values from the half that still contains 
elements. 

The Merge algorithm is quite efficient and only requires one 
pass through each array to generate the sorted sequence. A 
maximum of N comparisons will be involved, where N is the 
length of LeftHalf or RightHalf. This makes it linear in 
complexity. 

if leading item in LeftHalf < ieädihg item in RightHalf 
apr■end leading item in LertHalt to Re:un 

else 
append feading iiem in RightHalf to Result 

endif 
until LeftHalf or RightHalf is empty 
while LettH*» ■:orit<.mi element? 

append remaining items from LeftHalf to Result 
endwhiie 

while RightHatt contains elements 
append iemamiri.i item- Irom Pmrrtmil to Re:uH 
endwhiie 

return Result 
end 

Figure A.5.2. Merge Algorithm Description Screen 
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Comprehend the structure and function of the Merge Algorithm 

Detailed Look at Merging 

Execution Animation The Merge Algorithm 

Left Input Right Input 

9 6 8 

BBSS 
Execution Variables 

Passes X 

rr 
Y Z Comparing # of Swaps 

I     5 1    1 

Proc merge(L,R) 
loop 

ifL[x]<R(y] 
Resuftfz} = L[x] 
Increment X and Z 

Increment y and z 
endrf 

_.yü*L5,9r.t i?.e.mPty. 
Flush remaining elements from R (or L) to Result 

return Result 

Execution Status Messages 

3eginning the Merge 
lomparing L(t) with R(1 )...Picking R(1) 
:omparing L(1) with R(2)... Moving 1.(1) 

Comparing L(2) with R(2)... Moving L(2) 
Comparing L(3) with R(2)... Moving L(3) 
Comparing L(4) with R(2)...Picking R(2) 

Press here to continue Animation 

Figure A.5.3. Merge Algorithm Detailed View Screen 

Objective pbserue and compare how the Merge algorithm works on larger datasets 

■ 

Topics > 
Back 

s how me: 

Merge 

The Merge Algorithm in Action 

Select speed 
(or press LEFT mouse button during 

algorithm execution to adjust) 

J Fastest 
J 
. ,1 Medium 
.; 
§> Slowest 

Left List Riant List 

llll ill 

 ..m;ilHII!liJllllliElllllllll 

Color Legend 
Wl from Leftside 
■1 from RightSide 
I   j comparing 
B selected value 
(~~| used data 

Merged List 

Figure A.5.4. Merge Algorithm Populated View Screen 



188 

Objective  [Test your knowledge about specific aspects of the Merge a!gorr(hrn 

Back 1 
Questions about Merging 

_l Questionl 

; Question? 

*f Question3 

*TQuestion4 

Which of the following is true of the Merge algorithm: 

O Elements in the input arrays dont have to be in any particular order 

O Elements in ONE of the input arrays MUST be in order 

O Elements in BOTH of the input arrays must be in order 

®|8oth input arrays must have the SAME numberjjf elements 

Sorry...Merge WILL work with arrays ol different 
lengths.  Please try again. 

OK 

Figure A.5.5. Merge Algorithm Question Screen 
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B.6    QUICKSORT 

Objective [This screen provides the basic idea of the Quicksort algorithm 

Introduction to Quicksort Menu 
n > 

Quicksort works by choosing an arbitrary 
element, called the pivot Hem, and 

segregates all the items in the group 
based on whether they are larger or 

smaller than the pivot. When complete, the 
group is partitioned into two subgroups, 

one composed of elements bigger than the 
piuot and another composed of elements 
smaller than the pivot. The pivot stands 

between the two subgroups. 

Show Me the First Partitioning 

Next, Quicksort takes these two 
subgroups, and performs a Quicksort on 
each of theni...eventuaHy stopping when 

the sublists contain just 1 value, and are by 
default, in order within themselves. 

Show Me the Rest 

Figure A.6.1  Quicksort Aigorithm Conceptual View Screen 

Objective   jProvide information about the behavior of the Quicksort algorithm and introduce the pseudocode 

Topics 
Back 

Description of Quicksort 

SuickSort is a recursive algorithm that is uses a Divide-anö-Conquer approach to 
generate sorted sequences. The essential idea is that it is taster and easier to sort 
2 small lists than 1 large one. Quicksort has 3 simple operations: 

1. Partition the input into halves around a selected Pivot value 
2. QuckSort the half leading up to the Pivot 
3. Quicksort the halt following the Pivot 

The key to QuckSort is in the Partitioning step. Using one of the elements as a 
pjvpt value, Partitioning hvolves scanning the elements and moving those thatlSFfT 
smaller than the Pivot to the left side of the array, and moving those that are larger 
han the Pivot to the right side of the array. This movement is performed 'in-place' 
so that temporary storage is not needed (hence the use of ScanL, ScanR and 
swap). 

When Partitioning is finished, we are guaranteed to have at least 1 element in 
ilacc (the pivot), and that all elements to the feft of the pivot are smaler, and all 
hose to the right are larger. Quicksort catts itself with the two sub-lists until it 
eaches the base case. 

The base case is when the input to QuckSort contains only 1 element and cannot 
ae divided any further. By default, a fist of one element is h order, so what gets 
eturned is an ordered sequence of 1 element. 

Because Quicksort splits the input in smaller parts, this algorithm is very efficient, 
nvolving as few as "N Log N" steps. This is much less than the N-squared 
^omplexSy of Bubble and Selection Sort algorithms. So, for a list of SO elements, 
WergeSort requires approximately 300 steps whereas Bubble sort would requre 
2500! However, the choice of pivot plays a crucial part in the efficiency. A bad 
choice that doesnt lead to balanced partitions results in N-squared complexity! 
ollow this link to learn more about pivot selection. 

.E^..®!**«!^ 
if LeflEnd and RlghtEnd mark more than 1 etement m ARRAY 

irWalize ScanR to LeftEnd and ScanL to RkjhtEnd 
repeat 

whrteScanL > S^arÄ and ARRAY[ScanR] < Pivot 
increment ScanR 

while^ScanL >. Scan^srMh^A^^anL] > Pivot 
decrement ScanL 

swap ArrayfScanR] and Array[ScanL] 
increment ScorR and decrement ScanL 
until pointers have crossed over each other 

swap Pivot into position marked by ScanR 
_ARRAY[LeftEnd .JNvot-1] = quicksort(ARRAY[LettEnd .. Pivot-1]) 
.Jy?*!^ RTghtEndj) 

return ARRAY[LeftEnd..RightEnd] 

endproc 

Figure A.6.2. Quicksort Algorithm Description Screen 
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Objective    Comprehend the structure and function of the OutckSort Algorithm 

Detailed Look at Quicksort 

Execution Animation 

1 2 

Execution Variables 

Recursion Depth Let 

I   4 
Pivot 

I   2 
Right 

! s 
Comparing ((Comparisons 

!    13 

ttSuuaps 

I     3 

Total Calls 

I     4 

[2j [sj L±J \7j LU 
m 

9 

proc Quicksort(ARRAYILeftE^^^^ 
if LeftEnd and RlghtEnd mark more than 1 element jn ARRAY 

initiaize ScanR to LeftEnd and ScanLJo RightEnd 
repeat 

while ScanL > ScanR and ARRAY(ScanR| < Pivot 
increment ScanR 

while ScanL > ScanR and ARRAY[ScanL] > Pivot 
decrement ScarL 

swap ArraytScanR] and Array[ScanL j 
increment ScanR and decrement ScanL 
until pointer•: have cro:f.e>;i ovf-r each other 

;wap Pivot into portion mar<eg by ScanR 
ARRAY[LeftEnd Pivot-1] = qutcksortf;ARRAY[LettErtd .. Pivot-1]) 
ÄRRÄY[^ 

return ARRAY[LettEnd RightEnd] 
endif 

endproc 

Execution Status Messages 

.ooking teft for value bigger than 4 
Swapping 4 with 5 
Partitioning complete at this level; putting pivot into place... 
Calling Quicksort for elements 2 thru 3 using Pivot=2 

Press hereto continue Animation 

Figure A.6.3. Quicksort Algorithm Detailed View Screen 

Objective bbserue how Quicksort works on larger sets of numbers 

Topics; 

Back 
> 

Show me: 

jQuickSort 

Quicksort in Action 

Color Legend 

■I pending or done 
^ swapping 
■a scan right 
EH scan left 

Selects 
pivot strategy: 

_| Leftmost Element 

j Random Element 

#' Median-of-3 

Select speed 
(or press LEFT moose button dining 

algorithm execution to adjust) 

j Fastest 
j 
J Medium 

J Slowest 

Your 
Predictions: Ca 

Actual 
culations: 

Recursive Colls: 5D 33 

Compdiisons: 100 181 

Swops: 60 5? 

Maximum Depth: 7 8 

Figure A.6.4. Quicksort Algorithm Populated View Screen 
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Objective   [Test your knowiedge about specific aspects of the Quicksort algorithm 

{Topics] 

■■''■■■'-f, Ö*ck I'-- 
Questions about Quicksort 

if Qucstionl 

*TQuestion2 

_J Questions 

Quet~^^^ 

Correct! 

Which of the following is true for Quick Sort: 

O Quick Sort generally makes N swaps 

® jAfter the PARTITION step, the pivot valuejs alwaysjmjKOfjer £oj5!tion| 

O Must always use the last value as the pivot 

OK 

Figure A.6.5. Quicksort Algorithm Question Screen 
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B.7   SHORTEST PATH 

Objective [This screen provides the basic idea of the Shortest Path algorithm using a real-world example 

Introduction to Shortest Path Algorithms < Menu > 

Dallas 

Determining the shortestfleast-cost path 
between Hnked objects is a common problem 

we deal with. For example, in the airline 
industry, cities are linked by jets that often stop 

in other cities on the way.  Consumers often 
find that the cheapest route is not the shortest 

one, as depicted in the example below. 

The Shortest Path (SP) algorithm finds the least 
costly path from a selected starting point to 

every other point of a connected group. It does 
this by considering the possible routes 

between places in a systematic way: from the 
starting point, the cheapest of the possible 

flights one city away is chosen. Next, it 
chooses the cheapest of the flights from either 

the starting point or the city just chosen one 
hop away. On the 3rd pass, the algorithm picks $ IJQ 
the 3rd shortest route, then the 4th, and so on 

unto aH cities have been visited. Each pass 
finds the shortest path to one more city. Try 

the example below to see how it works: 

Chicago 

Show the Example 
If you feel up to a challenge, you can try solving 

tlteSP problem for yourself. Click on the 
button below to set up some fictichnis rates, 

then click on the cities that you think are on the 
SP from Montgomery to Cancun 

Let mc try       j 
Caitran! 

Figure A.7.1 Shortest Path Algorithm Conceptual View Screen 

Objective 

B 
Topics! ----'—-- 
Back 

understand the basic behauior of the Merge Algorithm and introduce the pseudocode for it. 

Description of Dijkstras Shortest Path Algorithm 

Dijkstras algorithm methodically solves the shortest path problem using 
several simple steps: 

1. Initialize all vertices as UnVisited with infinite distance 
Pick a starting vertex and make its distance 0 

2. Repeat until all vertices have been visited: 
a. Find least-cost UnVisited Vertex and can it J 
b. Mark Jas Visited 
c. For each vertex R adjacent to J 

if the path to R through J is less than the current path to R 
Update the distance to R and make J the parent of R 

Step 2 is executed as many times as there are vertices hi the graph. 
Each iteration brings another vertex out of the UnVisited group, 
explores (checks the distance to) its neighbors, and may or may not 
involve reducing their paths. Each vertex will be Visited Just once, but 
will be explored multiple times, once for each adjacent neighbor (why is 
this?). If the nranh has no cycles, then paths will never be updated once 
found. However, If cycles are present, then a vertex, once Visited, wffl 
be re-encountered with a possibly shorter path through another vertex. 
Notice that this algorithm only works when positive edge weights are 
used; negative weights in a cycle in a greedy algorithm like this leads to 
incorrect results. 

Efficiency hinges on the method used to find the minimum in step 2a. A 
brute force approach leads to N-Squared complexity, while using a 
priority queue reduces the complexity to H-Loa N. 

Initiailization: mark each vertex as UnVisited & infinite distan 
picl- a rtartmg point and make iH di^n.:? = n 
repeat 

J = vertex with minima! distance of those not yet Visited 
mark J as Visited 
tor each vertex R still not Visited 

if there is an edge from J to R 
IT 0is1»ice|J| • E»:i?VJtiStart.J Ri • D.st«nc*|R| 

HstancejR]« Distance^)] + EdgeV\t(Start,J,R) 
ParentfRl = J 

until all vertices have been Visited 

Figure A.7.2. Shortest Path Algorithm Description Screen 
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Objective   Comprehend the structure and function of the Quicksort Algorithm 

ri   ■'■"■'■'! 
<i Menu  > Detailed Look at Shortest Paths 

Execution Animation Window 

™— EEEHEHH 

Pseudocode 
Initialize vertices: UnVisited wAirfinite distance 
pick a starting point and make its distance - Ö 
repeat    

J = UnVisited vertex with least distance 
...JJMrt jMWsjteir__ ___ ___ _ 

visited 
JjiqR  

it Distance|J| • EdaeWt<Start,J,R) < Oistance|R) 
DistancefRl = Distance!JJ ♦ Ed8eW(Stärt,J,RJ 

until all vertices have been Visited 
Print Path       _   ___    

Execution Variables Execution Status Messages 

Vertex   Known   Parent  Distance Starting Vertex |         | 
1 n n 9999 
2 0 0 9999 Vertex J |         | 

3 
4 

0 
0 

0 
0 

9999 
9999 

Vertex R |        | 

5 0 0 9999 Current Dist |        ) 
R n n 9999 
7 0 0 9999 Dlst via J | | 

V 

Figure A.7.3. Shortest Path Algorithm Detailed View Screen 

Objective Observe and compare how the Shortest Path algorithm works on larger graphs 

<   Menu  > 

Step 1: Create graph 

branching Factor 

O Light 

§> Medium! 

OHeavy 

] 2: Set animation 
tempo 

Step 3: Start animation 
by clicking on 
any verteil 

Step * RightCiick on 
any node to 
show path back 
to StartinnPoint 

Dijkstra's Shortest Path Algorithm 
Legend 

©Stalling Point 
©Not Visited 

Your Actual 
Predictions: Calculations: 

Visited: 0 
Comparisons: 0 
Shorter Paths: 0 

Figure A.7.4. Shortest Path Algorithm Populated View Screen 
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Objektivs   [fest your knowledge about spenfic -ISJJCCIK of Dljks'fa's Shortest Path .ilgorstiuT^ 

Topics 
Back 

Questions about Shortest Paths 

J Questionl 

j QuestionZ 

J Question3 

^Questionl 

How many times will vertex C manipulated in solving the shortest 
path: 

2 

# (Visited once, explored 3 times] 

O Visited once, explored Z times 

O Visited 2 times, explored 3 times 

( ) Visitprf nnrtp-  explored once 

Correct!  Node C is explored when nodes B,E,F 
are visited because C is adjacent to them. 

OK 

Figure A.7.5. Shortest Path Algorithm Question Screen 



APPENDIX B: MATERIALS USED DURING EXPERIMENTS 

This appendix contains examples of materials used for the experiments described in this 

dissertation. For brevity's sake, only the'post-tests are shown; the pre-tests for each experiment 

had the same form and type of question as the post-test, but with different data or slightly lower 

complexity. 

D.I. CONSENT FORM 

The consent form that each subject read and completed is shown on the following page. 

195 



196 

Auburn University 
Auburn University, Alabama 36849-5347 

College of Engineering 

Computer Science and Engineering Telephone (334) 844-4330 
107 Dunstan Hall 

Research Project Information 
"Rethinking Algorithm Animations " 

* 
Thank you for volunteering to participate in our research project at Auburn University. This project will 
explore the effectiveness of several methods of teaching algorithms. In the long term, your inputs might 
help us show that the ways we currently teach algorithms and other abstract concepts could be 
significantly improved, not only for better retention but for higher student satisfaction. In the short term, 
your participation will give you exposure to exciting new teaching techniques as well as a good foundation 
in several popular computer science algorithms. 

As a participant, you will be asked to do the following: 
• take a written, prior-knowledge survey (about 15 minutes) 
•participate in an observation session with a written post-test (about 60 minutes) 
• take a follow-up survey (about 20 minutes) 

Additionally, we ask that you not not discuss this session with other people (to avoid influencing their 
possible participation in any way). 

Please remember that we are evaluating OUR SYSTEM AND NOT YOU! The tests you take and the data 
we collect during the observation session will be totally anonymous; you won't be identified as an 
individual in any of the data we collect, nor named in any of the reports we develop after this research. 
You cannot fail any part of this session. Your participation is needed to help us identify usability 
problems with our system and if our animation system helps a student learn more effectively. Besides 
making a significant contribution to computer science research and learning more about selected popular 
algorithms, participation will provide homework credit for COMP0220 and COMP0360 students. 

There are no known risks associated with this experiment. During the experiment, you may request that 
your data not be used in our analysis, and we'll destroy it from our files. You may withdraw from the 
session at any time, although we hope you'll stick with it through to the end. 

We truly appreciate your time and willingness to participate in this computer system evaluation. 
Remember, we are not evaluating you, but our system, and therefore, you cannot fail any part of this 
session.   If you have any questions, please contact any of the individuals listed below: 
Principal Investigator Dr. N. Hari Narayanan   (334) 844-6312 narayan@Eng.Auburn.edu 
Research Assistant Steven Hansen (334) 270-9795 hansensr@mindspring.com 
Research Assistant Dan Schrimpshier (334)844-2158 schridi@Eng.Auburn.edu 

For more information regarding your rights as a participant you may contact Ms. Jeanna Sasser 
(844-5966) or Dr. Leanne Lamke (844-3231) at the Office of Human Subjects. 

Your session is scheduled on at in . 
date time location 

Thank you for your participation! 
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D.2. DEMOGRAPHIC SURVEY 

The demographic survey shown on the next page was used to gather information from prospective 

participants. This information was used to help create the randomly-assigned matched groups used in 

each of the experiments of this study. 
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Demographic Information 
Disclaimer: The following information is requested to allow us to form lab groups that have similar backgrounds and capabilities. 

This information will not be disseminated in any way and will not affect your standing in class. 

Name: Email address: Your anonymous ID: (any 3-digit code 
that we can use to identify your results) 

Please indicate the approximate score you obtained on any of the tests below that you may have taken: 
ACT SAT. GRE 

What is your approximate overall GPA? 
0                     0                    0 0 0 0 

4.0                       3.5                       3.0 2.5 2.0 1.5 
What is your approximate GPA in computer science classes? 

0                     0                    0 0 0 0 
4.0                       3.5                       3.0 2.5 2.0 1.5 

What was your approximate grade in CSE200 (or its equivalent)' ) 

O                     0                    0 0 0 0 
ABC D F Didnt 

Take It 
How many years of college have you completed? 

0                 0                 0 0 0 0 0 
1                      2                      3 4 5 6 7 + 

What is the highest degree you have earned? 
0 0 0 

Hiqh School                             Bachelor's Degree Master's Deg ree 
What degree are you attempting to earn now? 

0 0 0 
Bachelor's Degree                          Master's Degree Doctoral Degree 

Have you participated in Algorithm Visualization Research at Auburn University before? 
0                                              0                                         0 

No, never                               Yes, during Fall 97                 Yes, during Winter 98 
If yes: 

What did you like about it? 

What didn't you like? 

The Algorithm Visualization Lab sessions will probably take place in 2-hour sessions on the last two 
Fridays in May. Please indicate the times during which you have a conflict and could not attend 

o 
11-1 

o 
12-2 

o 
1-3 

0 
2-4 

o 
3-5 

o 
4-6 

o 
5-7 
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D.3. USER SATISFACTION SURVEY 

The survey shown on the following pages provided subjective feedback about student impressions 

of the HalVis system. 
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Satisfaction and General Impressions 
Disclaimer: The following information is requested to allow researchers to information to improve the program with which you 

interacted recently. This information will not be disseminated on an individual basis and will not affect your class standing. 

Please rate each of the items listed below in terms of how effective you thought it was 
Negative 

Use of textual descriptions (pop-ups) 

Use of audio 

Use of color to highlight actions 

Use of analogies and examples to introduce algorithms 

Use of hyperiinking to find related information 

Explanation of learning objectives on each screen 

Use of pop-up questions 

Clarity of button and menu names 

Positive/ 
Effective 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

o 
0 
o 
o 
o 
o 
o 
o 

Extremely 
Negative 

o 
o 
o 
o 
0 
0 
o 
o 

No 
Opinion/ 

Dont recall 

o 
o 
o 
o 
0 
o 
o 
o 

&r-' 

ÄS3EE2 DE 

~      The following questions ask you to rate aspects of the screens that described 
the algorithm specifics, containing the animations and the pseudocode (shown 

==±—, in the thumbnail diagram to the left) 

Effectiveness of the blue textual introduction explaining 
the algorithm prior to the animation 

Use of textual explanations (event messages) during 
animation 

Highlighting the pseudocode statements during the 
animation 

Counters that reflected the progress of the algorithm 

Ability to alter the speed of the animation 

Ability to rerun the animation 

Comment on the amount of information presented 

Did you try changing the data? 

How many times did you run the animation? 

Very 
Positive/ 
Effective/ 

Helpful 

0 

Positive 

0 

Negative 

0 

Extremely 
Negative/ 
Useless/ 

Confusing 

0 

No 
Opinion/ 

Dont recall 

0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Excessive Perfect Sparse 

Yes No 

4+ 3 2 1 0 
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S3 

.kUliUdikiikll!''^ 
The following questions ask you to rate aspects of the screens that illustrated the 
performance of the algorithms using the animated bars (shown in the thumbnail 
diagram to the left) 

* 
What was your impression of this screen 

Very 
Positive/ 
Effective/ 

Helpful 
0 

Counters that reflected the progress of the algorithm 0 

Ability to predict the performance of the algorithm '   0 

Ability to rerun the animation 0 

Ability to alter the speed of the animation 0 

Use of colors to illustrate the actions of the algorithm 0 

Comment on the amount of information presented Excessive 

How many times did you run the animation? 4+ 

Circle the data case you used most best 
case 

Positive        Negative       Extremely 

0 O 

O O 

O O 

O O 

O O 

O O 

Perfect 

3 2 

average 
case 

Useless/ 
Confusing 

O 

O 

O 

O 

O 

O 

No Opinion/ 
Dont recall 

O 

O 

O 

O 

O 

O 

Sparse 

0 

worst case 

Please provide your overall impression 

What was your impression of this program? 

What was your impression of the user interface? 

What was your impression of the navigation? 

Very 
Positive/ 
Helpful 

Very Easy 
to Learh 

Very 
Intuitive 

Positive 

Easy to 
Learn 

Intuitive 

Negative 

Hard to 
Learn 

Difficult 

Extremely 
Negative/ 
Confusing 

Rigid 

No Opinion/ 
Dont recall 

No Opinion/ 
Dont recall 

Frustrating      No Opinion/ 
Dont recall 

If you had to learn more algorithms in the future, which technique would you prefer to use, if it was available: 
O                                                     O                                                 O 

This Animation System  Traditional Text No Opinion  

Please comment on what you liked the most: 

Please comment on anything you didn't like about this program: 
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D.4. EXPERIMENTS WITH TEXT 

D.4.1. POSTTEST FOR EXPERIMENT IA 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 
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la. Does the pseudocode here re-order 
the elements in ARRAY into descending 
or descending order? 

lb. Make the necessary changes to the 
pseudocode above to produce an 
ascending sequence (unless it already 
does) 

1- Procedure MergeSort(ARRAY) 
2- if length(ARRAY) > 1 
3- Middle = length(ARRAY)/2 
4- LeftArray  = MergeSort(Array[1..Middle]) 
5- RightArray = MergeSort(Array[Middle+1..N) 
6- ResultArray = Merge (LeftArray, RightArray) 
7- Endif 
8- Return ResultArray 
9- EndMergeSort 

10- Proc Merge(LeftHalf,RightHalf) 
11- loop 
12- if LeftHalfM > RightHalf[y] 
13- Result[z] = LeftHalf[x] 
14- Increment X and Z 
15- else 
16- Result[z] = RightHalf[y] 
17- Increment y and z 
18- endif 
19- until RightHalf or LeftHalf is empty 
20- Flush remaining elements from RightHalf 

(or LeftHalf) to Result 
21- return Result 
22- endMerge 

3. Using the algorithm above on the data shown below, indicate how many calls to MergeSort 
would be needed to place the data into ascending order. 

ARRAY: 

Before 52 91 41 34 10 55 
# of calls: 

4.   If the values f52,91,7,41,34,10,551 are passed to MysterySort above, show: 
the value(s) passed as parameters into MergeSort when line 4 is 
executed the first time: 

the value(s) passed as parameters into MergeSort when line 5 is 
executed the first time: 
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5.   If the values [52,91,7,41,34,10,55] are passed to MergeSort, show the value(s) returned in 
ResultArray following each recursive call to MERGE on line 6 

Call# ResultArray 

* 

6.   The MergeSort algorithm will be used to sort an array of 1000 test scores. Which of the 
following is true: 

(a) The sort is fastest if the original scores are in random order 

(b) The sort is festest if the original scores are ordered from smallest to largest 

(c) The sort is fastest if the original scores are ordered from largest to smallest 

(d) The sort is the same, no matter what the order of the original elements. 
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D.4.2. POSTTEST FOR EXPERIMENT IB 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to . 
identify your participation efforts) 
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Bla. Does the pseudocode above re- 
order the elements in ARRAY into 
ascending or descending order? 

Bib. Make the necessary changes to the 
pseudocode above to produce an 
ascending sequence (unless it already 
does) 

1- Procedure MergeSort( ARRAY) 
2- if length(ARRAY) > 1 
3- Middle = length(ARRAY)/2 
4- LeftArray  = MergeSort(Array[1.. Middle]) 
5- RightArray = MergeSort(Array[Middle+1..N) 
6- ResultArray = Merge (LeftArray, RightArray) 
7- Endif 
8- Return ResultArray 
9- EndMergeSort 

10- Proc Merge(LeftHalf, RightHalf) 
11- loop 
12- if LeftHalf[x] > RightHalf[y] 
13- Result[z] = LeftHalf[x] 
14- Increment X and Z 
15- else 
16- Resultfz] = RightHalf[y] 
17- Increment y and z 
18- endif 
19- until RightHalf or LeftHalf is empty 
20- Flush remaining elements from RightHalf 

(or LeftHalf) to Result 
21- return Result 
22- endMerge 

B2. The MergeSort algorithm will be used to sort an array of 1000 test scores. Which of the 
following is true: 

(a) The sort is dramatically faster if the original scores are in random order 

(b) The sort is dramatically faster if the original scores are ordered from smallest to largest 

(c) The sort is dramatically faster if the original scores are ordered from largest to smallest 

(d) The sort is about the same, no matter what the order of the original elements. 

B3.   If the following data was passed to the Merge procedure on line #10, indicate what would be 
returned in the array called Results.   Use the unaltered version of the algorithm. 

Left Array Right Array 
5 26          34 9 27          30 33 71 

Result Array 
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B4. Using algorithm above on the data shown below, indicate how many calls to 
MergeSort would be needed to place the data into ascending order. 

ARRAY: 

Before 52 91 7 41 34 10 55 
# of calls: 

B5. If the values [52,91,7,41,34,10,55] are passed to MergeSort, produce a diagram 
showing the sequence of calls. Use the unaltered version. Be sure to indicate the values 
passed as inputs to each call and the results that are passed back upon completion of the 
call. 

e.g. ProcedureName DMPUT:( 52, 91, 7,41, 34,10, 55) 
RETURNS (??, ??, ??, ??, ??, ??, ??) 
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Cla. Does the pseudocode above 
re-order the elements in ARRAY 
into ascending or descending order? 

C2. Make changes to the 
pseudocode above to produce an 
ascending sequence (unless it 
already does) 

1- Procedure QuickSort(ARRAY[L.R]) 
2- if length(ARRAY) > 1 
3- Select Pivot and put in ARRAY[L] 
4- initialize ScanR = L-1 and ScanL = R 
5- repeat 
6- while ScanR > ScanL and ARRAY[ScanR] < Pivot 
7- increment ScanR 
8- while ScanR > ScanL and ARRAY[ScanL] > Pivot 
9- decrement ScanL 
10r swap ARRAY[ScanR] and ARRAY[ScanL] 
11 - increment ScanR and decrement ScanL 
12- until ScanL <= ScanR 
13- swap Pivot in ARRAY[L] with ARRAY[ScanR] 
14- ARRAY[L.ScanR-1] = QuickSort(ARRAY[L. ScanR-1]) 
15- ARRAY[ScanR+1..R]=QuickSort(ARRAY[ScanR+1.. R) 
16- else 
17- return ARRAY[L.R] 
18- endif 
19-endproc 

C3. What can be said after k (some arbitrary number) of calls to Quicksort: 

(a) About k2 comparisons will have been made 

(b) At least k elements will always be in place regardless of the order of the input 

(c) Exactly k-1 Merge operations will have been performed 

(d) No more than k swaps will have been made. 

(e) None of the above 
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C4.   If the following data was passed to the Quicksort procedure, indicate the contents of the 
ARRAY after the first execution of the loop depicted in lines #5-13.   Use the unaltered version of 
the algorithm in question #Cla. 

33 26 

Original Input 
ARRAYfL.-RI 

44 71 21 

Result after'1st Partitioning (lines #5-13) 
ARRAYrL..ScanR-l] Pivot ARRAYfScanR+l..R1 

C5. Using the algorithm above on the data shown below, indicate how many calls to Quicksort 
would be needed to place the data in the array below into order. Use the unaltered version in 
question #C1. 

ARRAY: 

Before 33 26 44 9 71 21 6 
# of calls: 

C6. If the values [33, 26, 44, 9, 71, 21, 6] are passed to Quicksort, produce a diagram showing 
the sequence of calls. Use the unaltered version. Be sure to indicate the values passed as inputs to 
each call and the results that are passed back upon completion of the call. 

e.g. ProcedureName INPUT:( 33, 26, 44, 9, 71, 21, 6) 
RETURNS (??, ??, ??, ??, ??, ??, ??) 
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D.5. EXPERIMENTS WITH TEXT AND EXERCISES 

D.5.1. POSTTEST FOR EXPERIMENT H 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 
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1. Show the order of elements in ARRAY after the first pass of an ascending Selection Sort 

algorithm: 

ARRAY 
Before 4 2 1 5 3 
After 
1 pass 

2.   How many swap operations would occur in the problem described above (first pass of 
ascending Selection Sort)? 

3. In a sentence or two, describe the basic behavior of the Selection Sort algorithm 

4. Show the order of elements in ARRAY after the first pass of an ascending Bubble Sort 
algorithm: 

ARRAY 

Before Don Carl Ann Eric Bev 
After 1 

pass 

5.   How many swap operations would occur in the problem described above (first pass of 
ascending Bubble Sort)? 

6. In a sentence or two, describe the basic behavior of the Bubble Sort algorithm 
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7. The psueudocode to the right 
implements which popular sort algorithm? 

for x = N-1 downto 1 
for y = N downto N-x+1 

if ARRAY[y] < ARRAY[y-1] 
swap ARRAY[y] and ARRAY[y-1] 

endif 
endfor 

endfor 

8a. Does the pseudocode above re-order the elements in ARRAY into descending order? 

8b.    If not, make pen and ink changes to alter the pseudocode above to produce a descending 
sequence 

9. Using the algorithm shown in problem 7 above, how many comparisons and swaps would be 
made to produce a sorted sequence given the input [1,2,3,4] 

Comparisons Swaps 

10. Using the modified algorithm below, how many comparisons and swaps would be needed to 
produce a sorted sequence given the input [1,2,3,4]? 

Comparisons Swaps for x = N-1 downto 1 
SORTED = 1 
for.y = N downto N-x+1 

if ARRAY[y] < ARRAY[y-1] 
SORTED = 0 
swap ARRAY[y] and ARRAY[y-1] 

endif 
endfor 
if SORTED = 1 

exit 
endif 

endfor 
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11. This psueudocode to the right 
implements which popular sort algorithm? 

forx=1toN-1 
CHOICE = x 
for y = x+1 to N 

if ARRAY[y] > ARRAY[CHOICE] 
CHOICE = y 

endif 
endfor 
swap ARRAY[CHOICE] and ARRAY[x] 

endfor 

12a. Does the pseudocode above re-order the elements in ARRAY into descending order? 

12b.    If not, make pen and ink changes to alter the pseudocode above to produce a descending 
sequence 

13. Using the algorithm above, how many comparisons and swaps would be made to produce a 
sorted sequence given the input [1,2,3,4] 

Comparisons Swaps 

14.   Using the modified algorithm below, how many comparisons and swaps would be needed to 
produce a sorted sequence given [1,2,3,4]? 

Comparisons Swaps for x= 1 to N-1 
CHOICE = x 
for y-= x+1 to N 

if ARRAYfy] > ARRAYfCHOICE] 
CHOICE = y 

endif 
endfor 
if CHOICE not = x 

swap ARRAYfCHOICE] and ARRAYfx] 
endif 

endfor 
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15. Circle the item(s) below that are true: 

A       On average, Bubble Sort makes fewer swaps than Selection Sort 

B       On average, Bubble Sort makes more swaps than Selection Sort 

C       On average, Bubble Sort makes the same number of swaps as Selection Sort 

16. After k (some arbitrary number) passes, the first k items are always in the proper place for: 

A       Bubble Sort 

B       Selection Sort 

C       Both Bubble Sort and Selection Sort 

D       Neither Bubble Sort nor Selection Sort 

17. Organize the values [1,2,3,4,5] into an input sequence that causes the standard Bubble Sort 
algorithm to make fewer swap operations than the Selection Sort algorithm. 

Answer: 
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D.5.2. HANDOUT FOR TEXT GROUP OF EXPERIMENT H 

The following pages are the handout we crafted from our review of the sections of sorting 

algorithms from 19 commercially available textbooks. 
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Sorting Algorithms 

Learning Objectives: 

• Understand the basic concepts of sorting algorithms 

• Leam the construction and behavior of specific sorting algorithms 

• Predict how sort algorithms will operate on a given data set 

• Be able to modify and find errors in sorting algorithms 

Introduction 

Sorting is one of the more interesting topics in computer science and in the study of algorithms, not 
only because sorting is a common and useful problem but also because there are many different 
ways one can sort a list. The various approaches are interesting to study and understand. They 
represent different ways of solving a similar problem. Some approaches are easier to understand 
than others, some are more take less time, some use less space and some are better in situations 
where the order of the lists to be sorted is known in advance. 

The input to a sorting problem is an unordered list of elements, typically numbers or letters. The 
task is to produce the list in a particular order, either ascending or descending, based on each 
element's lexicographic value. A dictionary and a phone book are examples of alphabetically 
ordered lists in ascending sequence. Examples of numerical sequences are shown below, depicted 
as both horizontal and vertical lists of numbers. 

Unordered 

10 

Ascending Order 

10 

Descending Order 
10 

Unordered 

Ascending Order 

Descending Order    | 10 

6 4 8 10 1 

1 4 6 \ 8 10 

10 8 6 4 1 
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Bubble Sort 

The bubble sort algorithm uses a simple scheme.  Each iteration puts the smallest unsorted 
element in its correct place, changing places with other elements in the list. The first iteration puts 
the smallest element in the first position. Starting with the last element, we compare successive 
pairs of elements, swapping whenever the bottom element of the pair is smaller than the one above 
it. In this way, the smallest element "bubbles" up to the top or front of the list. The next iteration 
puts the smallest element in the unsorted part of the list into the second position, using the same 
technique. 

The figures below walk through sorting a 5-element list. Each row represents a comparison of the 
items in bold print, and arrows are used to show items that were exchanged or not. Each pass is 
indicated separately tor easier reading. Note that in addition to putting one element in its proper 
place, each iteration causes some intermediate changes in the order of the other elements also. 

The first traversal puts the value 1 into place at the head of the list, making 4 comparisons and 4 
swaps in the process. Note that this first traversal does not guarantee the entire list is sorted—it 
only ensures that the first element is. 

First Pass 

Before 

1st comparison 

2nd comparison 

3rd comparison 

■ith 4  comparison 

[1] [2]            [3]            [4]            [5] 

10 4         8         6         1 

X 
10 4         8         1 '    ~6 

* 
10 4         1*"* 8         6 

X. 
10 l" ^4         8         6 

10        4         8         6 
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The second traversal will bring the second largest element to its proper resting place. Notice that 
only 3 comparison operations were needed. A fourth was not required since the first element is 
already in position. Also notice that only 2 swap operations were needed, since the elements in the 
second comparison were not out of order as a pair. 

Second Pass 

m PI PI [4] [5] 

Before 1 
(in place) 

10 4 8 6 

* X 
1st comparison ■•iv r 

" (mptaoe) 
10 4 6 8 

t t 
2nd comparison 

Splicer 
10 4 8 6 

V, 
3rd comparison fff* 

fmphce) 
*'f4f7 

fmnboe) 
^10 8 6 

The third traversal will bring the third largest element to its proper resting place, requiring 2 
comparison operations and 2 swap operations. 

Third Pass 

[i] [2] PI [4] [5] 

Before .-1:V: 
(mptae) 

■'■:v4--- 
fmptaoe) 

10 8 6 

X 
1st comparison mm 

Gnphet» 

.,;4.: 
fmpteoe) 

10 6 8 

*** 
2nd comparison 

fm*oe> 
a  6  x 10 8 

The fourth traversal brings the fourth element into position, making 1 comparison and 1 swap. 

Fourth Pass 

[il [21 [3] [4] [5] 

Before 0*m 
(in place) 

10 8 

X 
1st comparison 

finches) (inpltoe) Cmpbcr) fmptice) finphce)": 
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Before writing down the algorithm in more detail, it should be pointed out that the second traversal 
need not extend to the first element, since by the time the second traversal starts, the first position 
in the list already contains its rightful tenant: the smallest value in the list. Similarly, the third 
traversal need not consider the first 2 elements, etc. This leads to an algorithm that carries out N-l 
such traversals (why not N?) to produce the final list. On each pass or traversal, the algorithm 
need only compare N-l elements in its first traversal, N-2 elements in the second, N-3 in its third, 
and so on. Thus the bubble sort algorithm involves two nested loops. The outer loop controls the 
number of (successively smaller) passes or traversals through the array. The inner loop controls 
the pairs of adjacent entries being compared. 

for x = N-1 downto 1 
for y = N downto N-x+1 

ifA[y]<A[y-1] 
swap the values in A[y] and A[y-1] 
endif 

endfor 
endfor 
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Selection Sort 

The basic idea of selection sort is to make repeated selections from a list of values, moving the 
selected value into its proper position in the list. On the first pass, find the smallest number in the 
list and exchange it with die one in the first position(A[l]). On the second pass, find the smallest 
number from the values in positions 2 on down and exchange it with A[2]. On the third pass, find 
and place the smallest remaining value into the third position, and so on until there are no more 
values in the unsorted portion of the list. Each pass puts one element into proper order, and 
reduces by one the number of elements in the unsorted portion. 

The figures below walkthrough sorting a 5-element list. Each row is labeled as a comparison 
between hems in bold print or a swap, wiht arrows showing items that were exchanged. Each pass 
is indicated separately for easier reading. Note that in addition to putting one element in its proper 
place, each iteration causes some intermediate changes in the order of the other elements also. 

The first pass involves comparing each of the values to find the smallest, keeping track of its 
position (call it MIN) until the last value has been considered. Then that value indicated by MIN is 
swapped with the item in position 1. Here, 4 comparisons are made, and one swap.  Note that this 
first traversal does not guarantee the entire list is sorted—it only ensures that the first element is. 
The first pass produces: 

First Pass 

Before 

[i] [2] P] [4] {51 

10 4 8 6 1 

1st comparison 10 4 S 6 1 

2nd comparison 10 4 8 6 1 

3rd comparison 10 4 8 6 1 

4th comparison 

Swap 

10 -. 4 8 6 1 

L 4 8 6 10 
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The second pass can ignore the value in the first position and begin comparing values in positions 2 
through 5. Notice that no swap is needed, since the value "4" was already in its proper position (in 
A[2]), yet 3 comparisons are made. 

Second Pass 

Before 

[i] [2] PI [4] [5] 

poll 4 8 6 10 

1  comparison    AIM 8 10 

,nd 2na comparison    '   1 / 
>j*"6nphce> 

10 

3rf comparison    ^^ 10 

; 

„-„4.-. 8 6 10 Swap 

The third pass will locate the smallest value in positions 3-5 and place it in position 3. This 
requires 2 comparison operations and one swap. 

Third Pass 

Before 

1st comparison 

2nd comparison 

Swap 

[1] [2] [3] [4] [5] 

;-;!•■■;• 

' (ninon 
4 

Gnpitce) 
8 6 10 

finttaeV 
a-4- ; 8 6 

■la 
10 

1. 
Gnuix») fiBPhce) 

8 6 10 

* 

' GnpbceV 
.i..-4ii,--: r ...$r 

' (mutes) 
^ 8 10 
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The fourth and final pass yields the sorted list, using one comparison but not needing any swap 
operations: 

[i] [2] [3] [41 [5] 

§1111 PÄ§ 10 

&£«£ 
fe JppWISäSS 

m&£. <*>**> 
8 10 

Fourth Pass 

Before 

1st comparison 

Swap 

Before writing the algorithm for this sorting procedure, note the following: 
1. If the array is of length N, then it takes N-l steps to put it into order 
2. We must be able to find the smallest number. Numbers that are equal are not considered 

smaller than each other. 
3. We need to exchange appropriate array components that are out of order (inverted) 

" 

SÄ 
% (muitoeV 

8 
§:'(S^ri•oü■'^ 

Lv;i,ö 

for j = 1 to N-1 
for j = i to N 

MIN = the index of the smallest value encountered 
endfor 

swap the values in A[J] and AfMIN] 
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Questions 

Use the data set below to consider answers for questions 1-5: 

[1] [2] [3] [4] 

Initial Values 

[5] 

8 4 26 2 7 

Bubble Sort Selection 
Sort 

Which element will move into the leftmost position on the 
first pass? 
How many comparisons will be needed to complete the 
first pass? 
How many swaps will occur in the first pass1? 
How many passes will it take until the remaining values 
are in place? 
Write the order of the elements as they would appear at 
the completion of the second pass  

6. The lines to the Bubble Sort algorithm are out of sequence below. From memory, try 
to number them to represent the correct sequence 

Line #    Algorithm Statement   
endfor 
for i = N-l downto 1 
compare A[J] with A[J+1], exchanging if necessary 
for j = N downto N-i 
endfor 

7. Do the same as problem #5 for the Selection Sort algorithm below: 

Line #    Algorithm Statement        
forj = itoN 
endfor 
exchange the values of AfJI and APVflN] 
MIN = the index of the smallest value encountered 
for j = 1 to N-l   
endfor 
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D.6. EXPERIMENTS WITH LECTURES 

D.6.1. POSTTEST FOR EXPERIMENT HI 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 
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Al. The psueudocode to the right 
implements which popular sort 
algorithm? 

A Quicksort 
B Mergesort 
C Bubble Sort 
D Insertion Sort 
E Selection Sort 
F I Dont Know 

A2. The psueudocode to the right 
implements which popular sort 
algorithm? 

A Quicksort 
B Mergesort 
C Bubble Sort 
D Insertion Sort 
E Selection Sort 
F I Dont Know 

1. 1 For x= 1 to N-1 
3. for y = x+1 to N 
4. ifARRAY[y-1]>ARRAY[y] 
5. swap ARRAY[y-1] and ARRAY[y] 
6. endif 
7. endfor 
8. endfor 

1. for x= 1 to N-1 
2. CHOICE = x 
3. for y = x+1 toN 
4. if ARRAY[y] < ARRAY[CHOICE] 
5. CHOICE = y 
6. endif 
7. endfor 
8. if CHOICE not = x 
9. swap ARRAY[CHOICE] and ARRAY[x] 
10 endif 
11 endfor 

A3. Show the order of elements in ARRAY after the following number of passes have occurred, using the 
Selection Sort algorithm. Remember that a single pass is the execution of all statements in the body of the 
loop controlled by variable x. 

Input ARRAY 1 2 3 5 4 

After 1 pass 
(i.ewhenjc= 1) 

After all passes 
(i.e. after JC has looped from 1 to N-1) 

^Comparisons #Swaps 

A4. After 3 passes, which of the following are true about the Selection Sort algorithm: 

A We are guaranteed that no more than 2 swap operations will be required 
B We are guaranteed that the first 3 items will always be in proper position 
C We cannot make any guarantees until we know the order of the input 
D All of the above are true 
E None of the above is true 

A5. If the data is already sorted into the proper order, can you think of a way for the Selection Sort 
algorithm to recognize this and prevent unnecessary comparisons and work? 

A6.   If you read the section in your textbook that covers the Selection Sort algorithm, please indicate 
about how many minutes you spent doing it: 
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Bl. What would happen if line #15 was altered 
to read: 

ifLeftHalfTxl>RizhtHalfry]  

A ResultArray would be in ascending order 

B ResultArray would have scrambled results 

C ResultArray would be in descending order 

D None of the above ___ 

1- Procedure MergeSort(ARRAY) 
2- if length(ARRAY) > 1 
3- Middle = length(ARRAY)/2 
4- LeftArray  = MergeSort(Array[1.. Middle]) 
5- RightArray = MergeSort(Array[Middle+1..N]) 
6- ResultArray = Merge (LeftArray, RightArray) 
7- Return ResultArray 
8- Else 
9- Return Array 
10- Endif 
11- EndMergeSort 

12- Proc Merge(LeftHalf,RightHalf) 
13- initialize x, y, z to 1 
14- loop 
15- if LeftHalf[x] < RightHalf[y] 
16- Result[z] = LeftHalffx] 
17- Increment X and Z 
18- else 
19- Result[z] = RightHalf[y] 
20- Increment y and z 
21- endif 
22- until RightHalf or LeftHalf is empty 
23- Flush remaining elements from RightHalf 

(or LeftHalf) to Result 
24- return Result 
25- endMerge                                                    | 

B2. This MergeSort algorithm will be used to sort an array of test scores. Which of the following is true: 

(a) The sort will take longer and work harder if the original scores are ordered from smallest to largest 

(b) The sort will take longer and work harder if the original scores are in random order 

(d) The sort will take longer and work harder if the original scores are ordered from largest to smallest 

(d) The sort will do the same amount of work and time no matter the order of the original elements. 

(e) None of the above are true 

B3.   If the following data was passed to the Merge procedure on line #10? indicate what would be 
returned in the array called Results.  Use the unaltered version of the algorithm. 

LeftArray 
51 57 74 

RightArray 
19 27 30 33 71 

ResultArray 
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B4. Using algorithm above on the data shown below, indicate how many calls to the MergeSort 
and Merge procedures would be needed to place the data into ascending order, and the contents of 
the array when the call(s) are completed: 

ARRAY: 

Before Evan Moe Al Dirk Carl Zed Art 

After • 

# of calls to MergeSort: # of calls to Merge: 

B5.  If you read the section in your textbook that covers the MergeSort algorithm, about how many 
minutes do you remember it took you? 

Please list some of the things you liked about the Algorithm Visualization Program: 

Please list some of the things you didn't like, or provide some suggestions we could use to improve the 
program: 

THANK YOU FOR PARTICIPATING— 
WE TRULY APPRECIATE YOUR TIME AND SUGGESTIONS! 
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D.7. EXPERIMENTS WITH OTHER ALGORITHM ANIMATION SYSTEMS 

D.7.1. POSTTEST FOR EXPERIMENT IV 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WELL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 
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Procedure DijkstraShortestPath 
I -    Initialisation: mark each vertex in table as UnKnown 

with infinite distance and no parent 
2- Pick a Starting Vertex and make its distance in table = 0 
3- Repeat 
4- J = vertex with minimal distance among UnKnown vertices 

in table 
5- mark J as Known in table 
6- for each vertex R still UnKnown in table 
7- if there is an edge from J to R 
8- if Distance^] + EdgeWeight(J,R) < Distance(R] 
9- Distance[R] = Distance^] + EdgeWeight(J,R) 
10- Parent[R] = J 
II -        until all vertices are Known in table 

Vertex 
id 

Known? Distance 

(dv) 

Parent 

id-1 UnKnown 00 

id-2 UnKnown 00 - 
id-3 UnKnown 00 - 
id-4 UnKnown 00 - 

This table represents the data structure used by Dijkstra 's 
Shortest Path algorithm 

1. What drives the order in which vertices are marked as Known? 

Line #1 of the algorithm above on the graph below leads to a table initialized as indicated: 

9 

Vertex Known? Distance 
(dv) 

Parent 
(Pv) 

A UnKnown 00 - 
B UnKnown 00 — 
C UnKnown 00 - 
D UnKnown 00 - 

2.   Indicate the order that nodes would be marked as 'Known' if vertex A was the starting point 
(ex: A-B-C-D) 

3.    Show the final contents of the data structure in the table below (right) if vertex A was the Starting 
Point 

Before Execution 
Vertex Known? Distance 

(dv) 

Parent 
(Pv) 

A UnKnown 0 
B UnKnown 00 - 
C UnKnown 00 — 
D UnKnown 00 - 

- Upon Completion 
Vertex Known? Distance 

(dv) 

Parent 
(Pv) 

A 0 
B 
C 
D 

4.   How many times will the algorithm consider/examine the distance to vertex D in solving problem #3 
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5. What can be said after k (some arbitrary number) iterations of lines 3-11: 

(f) About k2 comparisons will have been made 

(g) Approximately log k comparisons will have been made 

(h)        Exactly & vertices will have been visited 

(i) k unique parents will have been identified 

(j) At least k solution paths will have been found 

6. Dijkstra's algorithm reaches line 4 withihe following results (the graph is not shown for this data): 

Vertex Known? Distance 
(dv) 

Parent 
(Pv) 

1 Known 0 
2 Known 1 1 
3 UnKnown 3 2 
4 UnKnown 4 1 

What will J be when line 4 is executed? 

7.   What would the weights have to be in order to force the algorithm to mark the nodes as Known in the 
order: 

R-T-W-S 
5 

8. Given the following graph, fill in the appropriate values in the table as they would appear after 
the algorithm finished executing. The bold lines indicate the shortest paths from source vertex 
A to each of the other nodes that the algorithm found. 

Vertex Known 
7 

Distance (dv) Parent 
(p*) 

A 0 
B 
C 
D 
E 
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D.7.2. SCREEN CAPTURE OF VISUALIZATION USED BY AA GROUP 

^^^Bi^BtB^^E3ffi^^^S^^'->^'"'" r.   -ID|*I miiiim 11111——■wi'ii A 

[Tjjüj"J   Step |   Slow  <|                                         _|_>J F»« 

IM.IVM|E 1,1lül'IIWHW^MB^B^^H^fe^j,y^vg ■ i   -inlxF 

Dijkstra's Algorithm 

Init-Sinele-Source(G,start) 

s = {} 

Q = {V[G]} 

while Q!={} do 

u = Extract-Min(Q) 

S = S U{u} 

for each vertex v £ Adj[u] do 

if d[v]>d[u]+w(vi,v) then 

d[v] = d[u] + w(u,v) 

KffJ 
pi[v] = u 

L |   R |   D |   U |   In |:Ollt|     Debug | Rellesh|   Close  j 

0J_?J_LIJL1_!!LLH Debug | Refresh j   Close  | 
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D.8. EXPERIMENT; ABLATION OF FEATURES 

D.8.1. POSTTEST FOR FEATURES ABLATION STUDY 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 
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1. Does the pseudocode to the right sort 
the elements in ARRAY into ascending 
or descending order? 

2. Make pen and ink changes to the 
pseudocode so that it produces a sorted 
sequence that is the opposite of what it 
currently generates. 

1- Procedure QuickSort(ARRAY[L.R]) 
2- if length(ARRAY) > 1 
3- initialize VALUE = ARRAY[L] 
4- initialize LPtr = L+1 and   RPtr = R 
5- repeat 
6- while RPtr > LPtr and ARRAY[LPtr] < VALUE 
7- increment LPtr 
8- while RPtr > LPtr and ARRAY[RPtr] > VALUE 
9- decrement RPtr 
10- swap ARRAY[RPtr] and ARRAY[LPtr] 
11 -       increment LPtr and decrement RPtr 
12- until RPtr <= LPtr 
13- swap VALUE in ARRAY[L] with ARRAY[RPtr] 
14- ARRAY[L.RPtr-1] = QuickSort(ARRAY[L. RPtr-1]) 
15- ARRAY[RRr+1..R]=QuickSort(ARRAY[RPtr+1.. R) 
16- else 
17- return ARRAYfL.R] 
18- endif 
19- endproc         

3. What can be said after k (some arbitrary number) calls to Quicksort : 

(k)        Exactly k-1 Merge operations will have been performed 

(1) No more than k swaps will have been made. 

(m)       About k2 comparisons will have been made 

(n)        At least k elements will always be in place regardless of the original order of the input 

4. If the following data was passed to the Quicksort procedure, indicate the contents of the ARRAY after 
the first execution of the loop depicted in lines #5-13. Use the unaltered version of the pseudocode in 
question 1. 

Original Input 
35 14                      26                       9                       71                    55              33 

Result after 1st execution of lines 5-13 
ARRAY[L...RPtr-1] ARRAYIRPtrl ARRAY[RPtr+1..R] 

5. The effect(s) of the statements on lines 3-13 of Quick Sort include (circle all that apply): 

(a) Always places at least one value into its final sorted position 

(b) Migrates smaller elements to the left and large elements to the right 

(c) Places all elements in the right hand side into sorted order 

(d) Divides the array into equal sized partitions for sorting 

(e) All of the above 

(f) None of the above 
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6a. If the values [21,14,40,25,55,20] were passed to Quicksort, what pair of numbers would be exchanged 

first? 

(a) 14 and 21 

(b) 14 and 40 

(c) 20 and 40 

(d) 21 and 40 

(e) none of the above 

6b. What pair would be exchanged second? 

(a) 14 and 20 

(b) 14 and 21 

(c) 20 and 21 

(d) 25 and 55 

(e) none of the above 

7. Quicksort reaches line 14 with the following results: 

Afier lines 1-13: 

ARRAY[L.RPtr-1] 

4,1,6,3,7 

ARRAY[RPtr] 

The next time line 3 is reached, what will VALUE contain? 

ARRAY[RRr+1..R] 

18,29,11,20 

What two numbers would be the next to be swapped? 
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D.9. EXPERIMENT; DUAL VIEW ABLATION 

D.9.1. POSTTEST FOR DUAL VIEW ABLATION 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 

Note: The top performer in each of the four lab groups 

will win a cash prize! Good luck! 

Winners will be announced next week usine the 3-disit ID code 
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1. Does the pseudocode to the right 
sort the elements in ARRAY into 
ascending or descending order? 

2. Make pen and ink changes to the 
pseudocode so that it produces a sorted 
sequence that is the opposite of what it 
currently generates. 

1- Procedure QuickSort(ARRAY[L.R]) 
2- if length(ARRAY) > 1 
3- initialize VALUE = ARRAY[L] 
4- initialize LPtr = L+1 and   RRr = R 
5- repeat 
6- while RPtr > LPtr and ARRAY[LPtr] < VALUE 
7- increment LPtr 
8- while RPtr > LPtr and ARRAYfRPtr] >= VALUE 
9- decrement RPtr 
10- swap ARRAYfRPtr] and ARRAY[LPtr] 
11 -       increment LPtr and decrement RPtr 
12- until RPtr <= LPtr 
13- swap VALUE in ARRAY[L] with ARRAY[RPtr] 
14- ARRAY[L.RPtr-1] = QuickSort(ARRAY[L. RPtr-1]) 
15- ARRAY[RPtr+1..R]= QuickSort(ARRAY[RPtr+1.. R) 
16- else 
17- return ARRAY[L.R] 
18- endif 
19-endproc     

3. The effect(s) of the statements on lines 3-13 of Quick Sort include (circle aH that apply): 

(a) Migrates smaller elements to the left and large elements to the right 

(b) Always places at least one value into its final sorted position 

(c) Places all elements in the right hand side into sorted order 

(d) Divides the array into equal sized partitions for sorting 

(e) None of the above 

4.   If the following data was passed to the Quicksort procedure, indicate the contents of the ARRAY 
after the first execution of the loop depicted in lines #5-13. Use the unaltered version of the 
pseudocode in question 1. 

 Original Input 
35 14 26 71 55 33 

Result after 1st execution of lines 5-13 
ARRAY[L..RPtr-1] ARRAYfRPtr] ARRAY[RPtr+1..R] 

5. What can be said after k (some arbitrary number) calls to Quicksort: 

(a) Exactly k-1 Merge operations will have been performed 

(b) No more than k swaps will have been made. 

(c) About k2 comparisons will have been made 

(d) Approximately k elements will always be in place regardless of the order of the input 
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6a. If the values [21,14,40,25,55,7,20] were passed to Quicksort, what pair of numbers would be 

exchanged first? 

and 

6b. What pair would be exchanged second? 

and 

6c. What pair would be exchanged third? 

(a) 7 and 21 

(b) 14 and 21 

(c) 20 and 21 

(d) There won't be a third exchange 

6d How many calls to Quicksort will it take to complete the sort from start to finish, using the data in 
#6a? 

(a) 3 

(b) 4 

(c) 7 

(d) 11 

(e) None of the above 

7. A different execution of Quicksort reaches line 14 with the following results: 

After lines 1-13: 

ARRAY[L.RPtr-1] ARRAY[RPtr] ARRAY[RPtr+1..R] 

4,1,6,3,7,2 8 18,29,11,20 

The next time line 3 is reached, what will VALUE contain? 

What two numbers would be the next to be swapped? 
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D.10. EXPERIMENT: SINGLE VIEW ABLATION 

D.10.1. POSTTEST FOR SINGLE VIEW ABLATION STUDY 

Each test included a cover page with space for the subject to enter his or her identification code (a 

3 digit code that gave anonymity to each participant but allowed us to track performance through 

the phases of the experiment), and the disclaimer shown below: 

Knowledge Survey 

NOTE: Your answers to these questions WILL NOT affect your 
grade in any way; they merely help us understand how effective 
the experimental material presented to you about algorithms was. 
Please answer each question to the best of your ability. 

Please Enter Your ID: 
(this is the 3-digit code you picked to 
identify your participation efforts) 

Note: The top performer in each of the four lab groups 

will win a cash prize! Good luck! 

Winners will be announced next week using the 3-digit ID code 
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1. In Dijkstra's Shortest Path algorithm, what drives the order in which vertices are marked as 

Visited? 

Based on the example graph below, the initialization step of the Shortest Path algorithm leads to a table 
initialized as indicated: 

Vertex Visited? Distance 
(dv) 

Parent 
(Pv) 

A UnVisited 00 - 
B UnVisited 00 - 
C UnVisited 00 — 
D UnVisited 00 - 

2.    Indicate the order that nodes would be marked as 'Visited' if vertex A was the starting point (ex: A- 
B-C-D) 

3.    Show the final contents of the data structure in the table below (right) if vertex A was the Starting 
Point 

Before Execution 
Vertex Visited? Distance 

(dv) 
Parent 

(Pv) 

A UnVisited 0 - 
B UnVisited 00 ~ 
C UnVisited 00 ~ 
D UnVisited 00 - 

Upon Completion 
Vertex Visited? Distance (dT) Parent 

(Pv) 

A 0 
B 
C 
D 

4.   How many times will the algorithm consider/examine the distance to vertex D in solving problem #3 

5.   What can be said after k (some arbitrary number) iterations/loops of the basic ShortestPath algorithm: 

(a) About k2 comparisons will have been made 

(b) Approximately log k comparisons will have been made 

(c) Exactly k vertices will have been visited 

(d) k unique parents will have been identified 

(e) At least k solution paths will have been found 
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6. Dijkstra's algorithm is about to begin another iteration, with interim results as shown in the table 
below (note the graph is not shown for this data): 

Vertex Visited? Distance 
(dY) 

Parent 
(Pv) 

1 Visited 0 
2 Visited 1 1 
3 UnVisited 3 2 
4 UnVisited 4 1 

Based on these interim results, what Vertex will be the next one to be marked as Visited? 

7.    What would the weights have to be in order to force the algorithm to mark the nodes as Visited in the 
order: 

R-T-W-S 

8.    Given the following graph, fill in the appropriate values in the table as they would appear after the 
algorithm finished executing. The bold lines indicate the shortest paths from source vertex A to each 
of the other nodes that the algorithm found. 

Vertex Visited? Distance 
(dv) 

Parent 
(Pv) 

A 0 
B 
C 
D 
E 
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9. The statements below represent the steps involved in the Shortest Path algorithm, but they are 
obviously out of order. Number the statements below to indicate their proper order. Note that statement 
#1 is already marked for you. As a convenience, the table used by the algorithm is shown to the right. 

Line 
# 

Algorithm Statements Vertex 
id 

Visited? Dist 
(dr) 

Parent 

EndRepeat id-1 UnVisited 00 - 
id-2 UnVisited 00 - 
id-3 UnVisited 00 _ 

if Distance^] + EdgeWeight(J,R) < Distahce[R] id-4 UnVisited 00 - 

mark J as Visited in table This table represents the data structure used 
by Dijkstra 's Shortest Path algorithm 

ParentJR] = J 

J = vertex with minimal distance among UnVisited vertices in 
table 

Endif 

Pick a Starting Vertex and make its distance in table = 0 

Distance[R] = Distance[J] + EdgeWeight(J,R) 

if there is an edge from J to R 

for each vertex R still UnVisited in table 

Endif 

until all vertices are Visited in table 

1 mark each vertex in table as UnVisited with infinite distance and 
no parent 

Repeat 



APPENDIX C: USAGE AND INTERACTION DATA 

This section contains figures, tables and data gathered from subjective surveys 

that subjects completed in two of the experiments, and from user interaction profiles that 

Hal Vis logged during the experiments. 

The figure below shows the number of times the animations on the Detailed View 

(DV) and Populated View (PV) were executed by students for each of the experiments 

reported in this document. In the case of the ablation studies where selected features or 

views were removed, only the totals for the group receiving all views are provided. 

Animation Execution Summary 
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Figure C.1. Summary of Animation Executions for All Experiments 
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C.1   EXPERIMENT II USAGE AND SATISFACTION DATA 
A satisfaction survey was provided to all subjects to assess their perception of the HalVis system 

and their general attitudes formed during interacting with it. The scale for the satisfaction survey 

ranged from (-2) for very bad to (+2) for very good. The columns Max and Min indicate the 

highest and lowest rating of all the responses. 

Survey Item Average Max Min 
Use of textual descriptions (pop ups) 1.3 2 1 
Use of audio 0.8 2 -1 
Use of color to highlight actions 1.5 2 0 
use of analogies/examples to introduce algorithms 1.6 2 0 
Use of hyperlinking to find related information 1.4 2 0 
Explanation of learning objectives on each screen 1.1 2 0 
Use of pop-up questions 1.0 2 -1 
Clarity of button and menu names 1.4 2 -1 

DETAILED VIEW ITEMS 
Effectiveness of textual description of algorithm 1.2 2 0 
Use of contextual explanations during animation 1.3 2 0 
Highlighting pseudocode statements during animation 1.5 2 0 
Counters that reflect the progress of the algorithm 1.4 2 1 
Ability to alter the speed of the animation 1.8 2 1 
Ability to rerun the animation 1.9 2 1 
Did you try changing the data (1=Yes, 0=No) 0.6 1 0 
How many times did you run the animation 2.9 4 2 

Actual figure from usage logs: 5.5 10 2 

POPULATED VIEW ITEMS 
What was your impression of the Populated View 1.3 2 0 
Counters that reflect the progress of the algorithm 1.4 2 1 
Ability to predict the performance of the algorithm 1.1 2 -1 
Ability to rerun the animation 1.6 2 1 
Ability to alter the speed of the animation 1.9 2 1 
Use of colors to illustrate actions of the algorithm 1.4 2 0 
How many times did you run the animation 2.6 4 1 

Actual figure from usage logs: 4.1 7 2 
Data case used most (3=BestCase,2=Random,1=WorseCase) 1.9 3 1 

OVERALL IMPRESSIONS 
What was your impression of this program 1.4 2 1 
What was your impression of the user interface 1.3 2 0 
What was your impression of the navigation 1.3 2 1 

Table C.1. Experiment II Satisfaction Survey Data 
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Other observations from the survey: 

• 64% gave use of analogies to introduce algorithms the highest rating (2) 

• 100% rated use of analogies #1 or #2 

• 86% understated the number of times they thought they ran DV animations compared to 

actual times they ran it. 86% also understated the number of times they ran PV animations 

• 71 % used random ordering for the populated view. 12% used worse case ordering once. 

• 57% accessed the control panel on the DV 

• Only 10% tried changing the animation data (90% didn't) in the Detailed View. 

• 84% said they would choose to use the HalVis system to learn other algorithms if given the 

choice. The other 16% indicated no specific choice. 
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The figure below compares the number of times that students remembered running the 

animations, as reported in the subjective survey, to the actual number of times as reported in the 

HalVis usage logs. Except for student #23, everyone believed they ran the animations fewer 

times than they actually did. 

Comparison of Actual & Perceived Runs 
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Figure C.2. Actual and Perceived Detailed View Animation Executions, Experiment II 
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Com parison of Actual & Perceived Runs 
(Populated View, Exp II) 
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Figure C.3. Actual and Perceived Populated View Animation Executions, Experiment II 



247 

Positive Comments from Experiment II Subjective Survey 

I liked: 
the animations 6 comments 
the examples and analogies 3 comments 
the questions & making predictions 3 comments 
the step-by-step progress on algorithm pseudocode 2 comments 
seeing efficiency.. .("I didn't realize there was that much difference") 1 comment 
the voice explanations during the animation 1 comment 

The software: 
made the algorithm easier to understand 2 comments 
was much better than reading a book 1 comment 
made learning algorithms more interesting 1 comment 

Negative Comments from Experiment II Subjective Survey 

Sound: 
The sound was annoying 
It could use more sound 

1 comment 
2 comments 

Text: 
The text was too long and dull 
Needs more detail in the textual explanations 

2 comments 
1 comment 

The system was too simplistic.. .almost like we weren't supposed to know 
anything about sorting 

Table C.2. Summary of Student Remarks and Comments Following Experiment II 
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C.2   EXPERIMENT VI USAGE AND SATISFACTION DATA 

Survey Item CDP CD CP DP 
Use of textual descriptions (pop ups) 1.0 1.1 1.1 1.4 
Use of audio 0.1 -0.1 0.0 -0.1 
Use of color to highlight actions 1.3 1.4 1.3 1.3 
Use of hyperlinking to find related information 1.3 1.6 0.9 1.6 
Explanation of learning objectives on each screen 1.3 1.0 0.8 0.8 
Use of pop-up questions 1.3 0.3 1.2 0.8 
Clarity of button and menu names 1.1 1.1 0.6 1.1 

DETAILED VIEW ITEMS 
Ability to alter the speed of the animation 1.1 1.1 0.8 1.5 
Ability to rerun the animation 1.9 1.3 1.3 1.4 
Did you try changing the data (1=Y, 0=N) 1.0 1.0 0.7 0.5 
How many times did you run the animation 3.9 3.5 3.6 3.6 

OVERALL IMPRESSIONS 
What was your impression of this program 1.3 0.4 1.3 1.3 
What was your impression of the user interface 1.1 1.3 1.3 0.9 
What was your impression of the navigation 1.0 1.4 1.2 0.5 

Table C.3. Experiment VI Satisfaction Survey Data 
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Positive Comments from Experiment VE Subjective Survey 

I liked: 
the animations ("made understanding faster and easier...") 
the examples and analogies 
the questions & making predictions ("the question about rearranging the 

out-of-order pseudocode was very helpful") 
the step-by-step progress shown by highlighting algorithm pseudocode 
the Efficiency screen was quite revealing") 
the text explanations 
being able to enter my own data 

15 comments 
2 comments 
3 comments 
2 comments 
3 comments 
1 comment 
2 comments 
5 comments 

The software: 
made the algorithm easier to understand 
was much better than reading a book 
made learning algorithms more interesting 

2 comments 
1 comment 
1 comment 

The hyperlinks were helpful 1 comment 

Negative Comments from Experiment VII Subjective Survey 

The text: 
There was too much text 
The text was small and hard to read 
There wasn't enough text to explain the steps 

2 comments 
1 comment 
3 comments 

The software: 
Needed more sound 
Needed less color 

1 comment 
1 comment 

The question about rearranging the out-of-order pseudocode was hard 6 comments 

The animation: 
Needed a reverse button 
Was hard to stop once it was started 
The highest speed was not fast enough 
The populated view mooved too quickly, even at the slowest speed 

setting 
Should only be allowed to advance by mouse clicks 

1 comment 
3 comments 
2 comments 
1 comment 
1 comment 

I didn't like the algorithms expressed as pseudocode 1 comment 

Table C.4. Summary of Student Remarks and Comments Following Experiment VI 



APPENDIX D. THE JAWAA COMMANDS 

Researchers at Duke University (Pierson & Rodger, 1998) have created a system called 

JAWAA that implements the XTango command set using Java, which allows Internet delivery of 

animations. They have extended the XTango command set to facilitate animation of complex 

data structures, making it one of the best general purpose animation systems available. This 

section is provided for the convenience of the reader to include a description of the JAWAA 

script commands that the JA VIZ system also recognizes (because of its JAWAA heritage). This 

is a replica of the command syntax summary available at 

http://www.cs.duke.edu/~wcp/commands.html. 

D.I. GRAPHIC OBJECT CREATION COMMANDS 

D.1.1. PRIMITIVE OBJECTS 

•    circle name 
x 
y 
diameter 

string uniquely identifying this object 
x coordinate (int) 
y coordinate (int) 
(int) 

color 
bkgrd 

color of circle drawn 
color indicating background 

Example: circle cl 20 20 30 black transparent 

This creates a circle with the upper left corner at coordinate 20, 20, 
with a diameter of 20 and with the circle black and the interior 
transparent 
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line name 
xl 

yi 
x2 
y2 
color 

string uniquely identifying this object 
starting x coordinate (int) 
starting y coordinate (int) 
ending x coordinate (int) 
ending y coordinate (int) 
color of line drawn 

Example: line 11 20 20 40 40 30 black 

This will create a black line extending from 20,20 to 40,40 

text name quoted string uniquely identifying this object 
X x coordinate (int) 

y y coordinate (int) 
text string of text, in quotes 
color color of text 

Example text tl 40 40 "HELLO" red 

This will write the string "HELLO" at 40,40 in red 

rectangle name 
xl 

yi 
x2 
y2 
color 
bkgrd 

string uniquely identifying this object 
topleft x coordinate ( int) 
topleft y coordinate (int) 
bottomright x coordinate (int) 
bottomright y coordinate (int) 
color of rectangle drawn 
background color 

Example: rectangle rl 10 20 100 120 black red 

This will create a rectangle with its upper left corner at 10,20 and 
lower right corner at 100,120. It will be outlined in black and red in 
the interior 
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polygon 

Example 

name string uniquely identifying this object 
length number of points in coordinate list 
xl, yl ... xn, list of coordinates connected by lines to form the 
yn polygon 
color color of polygon drawn 
bkgrd color of polygon background 

polygon pi 3 15,10 30,5 40,20 yellow blue 

This will create a triangle with vertices at (15,10), (30,5), and 
(40,20). The edge will be yellow with blue on the interior 

D.2. DATA STRUCTURE OBJECT CREATION COMMANDS 

D.2.1. TREE OBJECTS 

The tree command will create a binary tree based on the connections listed in the command. All 
node names must be integers less than 100. Connections made between nodes will be created 
automatically using names in the form "startNode"-endNode" where" startNode" has been 
replaced with the name of the node from which the connection orginates. 

tree name string uniquely identifying this object 
x x coordinate of root node(int) 
y y coordinate of root node(int) 
width (int) 
(start 1, endl)      list of connections between nodes. The startNode 
... (startn, must have already been mentioned as an endNode 
endn) or must be the root node. 

Example tree tl 20 20 300 (1,2) (1,3) (2,4) 

This will create a tree with width 300 at 20,20 with the connections 
described 

addNode 

Example 

name name of tree 
(start-i, end-i)     connection to add to tree 

addNode tl (3,5) 

This will add the connection (3,5) to tree tl 
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D.2.2. GRAPH OBJECTS 

node 

Example 

connectNodes 

name 
x 
y 
diameter 
color 
bkgrnd 

string uniquely identifying this object 
x coordinate (int) 
y coordinate (int) 
int 
color of circle drawn 
color indicating background 

node nl 40 30 20 black transparent 

This will create a node at 40,30 with diameter 20 using a black 
outline and a transparent interior. 

name string uniquely identifying this object 
nodel string name of the node arc is coming from 
node2 string name of the node arc is going to 
color color of arc 
animateDraw      " "true "or" "false" indicating whether to animate 

the arc draw 

Example connectNodes al 2 3 black true 

This command will animate the connection of node 2 to node 3. 

•    marker 

Example 

moveMarker 

Example 

name string uniquely identifying this object 
nodeName node where marker starts 
diameter radius of marker (int) 
color color of marker edge 
bkgrnd color of background 

marker ml 2 10 black red 

This will create a black marker with red interior located at node 2 

name string uniquely identifying this object 
nodel string identifying the node to leave 
node2 string identifying the destination node 
connectionNm string identifying the arc/edge to follow 
color color of marker edge 
bkgrd color of background 

moveMarker ml 2 3 al black blue 

Animates the marker's movement from node 2 to 3 along arc "al" 
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graph name 
x 

y 
type 

width 
(start 1, endl) 

(startn, endn) 

name of graph to create 
x coordinate of upper left corner of graph 
y coordinate of upper left corner of graph 
string indicating drawing style, can be "CIRCLE" 
or "NORMAL" 
width of graph 
list of connections that make up the graph 

Example graph gl 1 1 NORMAL 300 (1,2) (1, 6) (6, 2) (6,3) (2,3) (5, 1) 

Creates a normal graph at 1,1 with width 300 using the listed 
connections to build the connections. As with trees, the connections 
created are named with the form: "startNode"-endNode". Note that 
NORMAL graphs must be connected, while CIRCLE graphs can 
have unconnected nodes 

addNode name                  name of graph 
node                   name of node to add 

Example addNode gl 10 

addEdge 

Example 

Adds node 10 to graph gl. Note that this command can only be 
used with graphs of type CIRCLE 

name name of graph 
(start-i, end-i)     connection between two nodes 

addNode gl (10,11) 

Adds a connection between nodes 10 and 11. Note that if used with 
a CIRCLE graph neither node must already be in the graph, but 
when used with NORMAL graph one of the nodes must already be 
in the graph 



D.2.3. ARRAY OBJECTS 
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array 

Example 

name name of array 
X x coordinate 

y y coordinate 
length number of cells in array 
value 1- valuen list of cell values 
orientation can be "horz" or "vert" 
color color of array outline 
bkgrd color of background 

array 20 30 3 4d "" hello horz black red 

Creates a horizontal array at 20,30 with 3 cells. This first cell 
contains "4d", the second is blank, and the third contains "hello". 
All cells in arrays can be accessed individually as rectangles. After 
creating an array called v"al" we could access the fourth cell by 
referring to an object called vval[3]". For example if we wanted to 
change the color of this cell to blue we would use the command: 
changeParam al[3] bkgrd blue 

D.2.4. STACK OBJECTS 

•    stack 

Example 

push 

Example 

name name of stack 
X x coordinate 
y y coordinate 
length length of stack contents 
valuel-valuen     list of stack values, beginning with top item 
color color of stack 

stack si 30 40 3 1 fred 56 black 

Creates a stack with the elements 1, "fred", and 56 

name 
value 

name of stack to push on 
value to push on stack 

push si 34 

Pushes the value "34" on stack si 
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pop 

Example 

name name of stack to pop from 

pop si 

Pops the top item off stack si 

D.2.5. QUEUE OBJECTS 

•    queue 

Example 

enqueue 

Example 

dequeue 

Example 

name name of queue 
x x coordinate 
y y coordinate 
length current length of queue contents 
value 1-valueN    list of queue values beginning with first item 
color color of stack 

queue ql 30 40 3 1 fred 56 black 

Creates a queue with the elements 1, "fred", and 56 

name 
value 

name of queue to push on 
value to put on the queue 

enqeue ql 34 

Puts the value "34" on the end of queue ql 

name       name of queue to dequeue 

deqeue ql 

Removes the first value of queue ql 
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D.3. ACTION COMMANDS 

• delay 

Example 

• changeParam 

Example 

Example 

Example 

• moveRelative 

Example 

• groupObjects 

Example 

delete 

Example 

int indicating length of pause in milliseconds length 

delay 100 

This will delay the animation for 1/10 a second 

name string indicating which object will be altered 
ParamName       name of parameter to change 
New Value new value of parameter 

changeParam cl color red 
This will change the color of el's outline to red. 

changeParam cl bkgrd blue 
This will change the color of el's interior to blue 

changeParam tl text "HELLO" 
The text object tl will now display "HELLO" 

name 
x 
y 

object to move 
amount to add to x position 
amount to add to y position 

moveRelative rl 30 40 
Animates the movement of rl to a point above and to the left of its 
current position. 

name name of aggregate of several objects 
namel-nameN    list of objects to group together 

groupObjects groupl cl rl b2 

This will create a new object that contains the objects cl, rl, and 
b2 which can then be treated as one object. For example, they could 
be moved together. 

name name of object to delete 

delete gl 

This will remove gl from the animation 


